Human polymorphonuclear leukocytes (PMN) were found to tightly adhere on endothelial (lines EAhy926 and ECV304) and collagen surfaces under the influence of the chemotherapeutic drug suramin. This was observed by scanning electron microscopy and quantitated by myeloperoxidase assays. Suramin also inhibited Ca2+ ionophore A23187-stimulated leukotriene (LT) synthesis in PMN interaction with endothelial cells or with collagen surface. Suramin decreased the release of radiolabeled arachidonic acid (AA) and 5-lip-oxygenase (5-LO) metabolites by prelabeled PMN stimulated with A23187. Using agents releasing the suramin-stimulated adhesion namely jasplakonolide and dextran sulfate, we observed a reversal of the suramin effect on leukotriene synthesis. Jasplakonolide released the adhesion of PMN on endothelial and collagen-coated surfaces and restored 5-LO activity. Dextran-sulfate released adhesion on collagen-coated surfaces and abolished suramin inhibition. Arachidonate could also overcome adhesion and inhibition of 5-LO. We conclude that suramin-induced tight attachment of PMN on to solid surfaces lead to decreased leukotriene synthesis during subsequent A23187 stimulation in the absence of exogenous substrates.

This content is only available as a PDF.
You do not currently have access to this content.