Axl is a receptor tyrosine kinase which promotes anti-apoptosis, mitogenesis, invasion, angiogenesis and metastasis, and is highly expressed in cancers. However, the transcriptional regulation of this important gene has never been characterized. The present study was initiated to characterize the promoter, cis-acting elements and promoter methylation driving expression of Axl. The 2.4 kb sequence upstream of the translational start site, and sequential 5′-deletions were cloned and revealed a minimal GC-rich region (−556 to +7) to be sufficient for basal Axl promoter activity in Rko, HCT116 and HeLa cells. Within this minimal region, five Sp (specificity protein)-binding sites were identified. Two sites (Sp a and Sp b) proximal to the translation start site were indispensable for Axl promoter activity, whereas mutation of three additional upstream motifs (Sp c, Sp d and Sp e) was of additional relevance. Gel-shift assays and chromatin immunoprecipitation identified that Sp1 and Sp3 bound to all five motifs, and mutation of all motifs abolished binding. Mithramycin, which inhibits binding of Sp factors to GC-rich sites, dramatically reduced Axl promoter activity and Axl, Sp1 and Sp3 expression. In Drosophila Schneider SL2-cells, exogenous expression of Sp1/Sp3 increased Axl promoter activity. Use of Sp1/Sp3 siRNAs (small interfering RNAs) significantly reduced Axl promoter activity and protein levels in Rko and HeLa cells. Methylation-bisulfite sequencing detected methylated CpG sites within three Sp motifs (Sp a, Sp b and Sp c) and GC-rich flanking sequences, and demethylation by 5-aza-2′-deoxycytidine up-regulated Axl and Sp3 expression in low-Axl-expressing Colo206f/WiDr cells, but not in high-Axl-expressing Rko cells. The results of the present study suggest that Axl gene expression in cancer cells is (1) constitutively driven by Sp1/Sp3 bound to five core promoter motifs, and (2) restricted by methylation within/around Sp-binding sites. This might enhance the understanding and treatment of essential mechanisms associated with cancer and other diseases.
Skip Nav Destination
Article navigation
Research Article|
August 07 2008
The human receptor tyrosine kinase Axl gene – promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation
Giridhar Mudduluru;
Giridhar Mudduluru
1Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors (German Cancer Research Center-DKFZ-Heidelberg), Mannheim Medical Faculty, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
Search for other works by this author on:
Heike Allgayer
Heike Allgayer
1
1Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors (German Cancer Research Center-DKFZ-Heidelberg), Mannheim Medical Faculty, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
1To whom correspondence should be addressed (email [email protected]).
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
May 30 2008
Accepted:
June 03 2008
Accepted Manuscript online:
June 03 2008
Online ISSN: 1573-4935
Print ISSN: 0144-8463
© The Authors Journal compilation © 2008 Biochemical Society
2008
Biosci Rep (2008) 28 (3): 161–176.
Article history
Received:
May 30 2008
Accepted:
June 03 2008
Accepted Manuscript online:
June 03 2008
Citation
Giridhar Mudduluru, Heike Allgayer; The human receptor tyrosine kinase Axl gene – promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep 1 June 2008; 28 (3): 161–176. doi: https://doi.org/10.1042/BSR20080046
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |