The golden hamster is an attractive model organism for studying reproductive physiology, oncology, genetics and virology. In an effort to establish experimental protocols necessary for cloning golden hamsters, we examined changes in the reciprocal position of the FPB (first polar body) and chromosome set of MII (the second meiotic metaphase) oocytes of golden hamsters. Oocytes were collected under three different conditions: (i) oocyte direct recovery from the oviduct of hormonally treated donor; (ii) oocyte recovery from the oviduct of hormonally treated donor followed by 5 h/10 h in vitro culture; and (iii) oocyte recovery from ovaries of hormonally treated donors and in vitro maturation. Then oocyte recovery was performed from the oviduct of hormonally treated donors, followed by 5 h in vitro culture with colchicine and/or CB (cytochalasin B). Denuded oocytes were stained with Hoechst 33342 and propidium iodide and evaluated under a microscope. Our results demonstrate that the change in FPB position in relation to the MII oocyte chromosome set increases with age of in vivo-matured oocytes. Cumulus cells can protect the FPB of in vitro-cultured oocytes from degeneration but do not significantly affect its repositioning, and in vitro-matured oocytes age slower. The colchicine has a stronger effect on cytoplasmic protrusions of golden hamster oocytes when compared with CB. These results define conditions for changes in FPB position relative to the MII oocyte chromosome set. Early ovulated oocytes, in vitro-matured oocytes and oocytes treated with colchicine should improve the effectiveness of the cloning procedure in golden hamsters as an animal model for human diseases.

You do not currently have access to this content.