The thermo-responsivity of PNIPAAm [poly(N-isopropylcarylamide)]-grafted PDMS [poly(dimethylsiloxane)] surface is a property that could be feasibly used for detaching cells adhered on the surface. We used benzophenone-initiated photopolymerization to graft PNIPAAm on PDMS substrates to construct the PNIPAAm-grafted PDMS surface and this PDMS surface was highly thermo-responsive. hMSCs (human mesenchymal stem cells) were used to analyse the proliferation and multi-differentiation of stem cells on the PNIPAAm-grafted PDMS surface. The results showed that hMSCs could adhere on the PNIPAAm-grafted PDMS surface at 37°C and form cell colonies, and then become fibroblastic. The proliferation potential of hMSCs on the PNIPAAm-grafted PDMS surface was not significantly different from that on a plate surface coated with gelatin. However, as it proved easier to detach cells from the surface, by changing temperature, a higher viability of detached cells could be obtained with the PNIPAAm-grafted PDMS surface, using a temperature shift, compared with a gelatin-coated surface, where cells are detached by treatment with trypsin. hMSCs on the PNIPAAm-grafted PDMS surface were induced into osteoblasts, adipocytes and neurocytes under osteogenic medium, adipogenic medium and neurogenic medium respectively. The PNIPAAm-grafted PDMS surface was favourable for osteogenesis of hMSCs, although the potentials of adipogenesis and neurogenesis of hMSCs on the PNIPAAm-grafted PDMS surface were similar to those on the plate surface coated with gelatin. The above results demonstrate that the PNIPAAm-grafted PDMS surface not only kept the potentials of proliferation and multi-differentiation of hMSCs, but also increased the viability of hMSCs.

You do not currently have access to this content.