In higher eukaryotes, RF-I (class I release factor) [eRF1 (eukaryotic release factor 1)] is responsible for stop codon recognition and promotes nascent polypeptide release from the ribosome. Interestingly, two class I RFs, eRF1a and eRF1b, have been identified among the ciliates Euplotes, which are variant code organisms. In the present study, we analysed the comparative expression of eRF1a and eRF1b in Euplotes cells, demonstrating that the expression of eRF1b was higher than that of eRF1a. An interaction between eRF1b and eRF3 was confirmed, suggesting that an eRF1b function is facilitated by eRF3. Co-localization of both eRF1s indicated that they function in the same subcellular location in Euplotes cells. We also analysed the characteristics of stop codon discrimination by eRF1b. Like eRF1a, eRF1b recognized UAA and UAG as stop codons, but not UGA. This finding disagreed with the deduced characteristics of eRF1a/eRF1b from the classic hypothesis of ‘anticodon-mimicry’ proposed by Muramatsu et al. [Muramatsu, Heckmann, Kitanaka and Kuchino (2001) FEBS Lett. 488, 105–109]. Mutagenesis experiments indicated that the absolutely conserved amino acid motif ‘G31T32’ (numbered as for human eRF1) in eRF1b was the key to efficient stop codon recognition by eRF1b. In conclusion, these findings support and improve the ‘cavity model’ of stop codon discrimination by eRF1 proposed by Bertram et al. [Bertram, Bell, Ritchie, Fullerton and Stansfield (2000) RNA 6, 1236–1247] and Inagaki et al. [Inagaki, Blouin, Doolittle and Roger (2002) Nucleic Acids Res. 30, 532–544].

You do not currently have access to this content.