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Osteoarthitis (OA) is the most common aging-related joint pathology; the aging process
results in changes to joint tissues that ultimately contribute to the development of OA. Ar-
ticular chondrocytes exhibit an aging-related decline in their proliferative and synthetic ca-
pacity. Sirtuin 1 (SIRT 1), a longevity gene related to many diseases associated with aging,
is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase and master
metabolic regulator. Along with its natural activator resveratrol, SIRT 1 actively participates
in the OA pathological progress. SIRT 1 expression in osteoarthritic cartilage decreases in
the disease progression of OA; it appears to play a predominantly regulatory role in OA.
SIRT 1 can regulate the expression of extracellular matrix (ECM)-related proteins; promote
mesenchymal stem cell differentiation; play anti-catabolic, anti-inflammatory, anti-oxidative
stress, and anti-apoptosis roles; participate in the autophagic process; and regulate bone
homeostasis in OA. Resveratrol can activate SIRT 1 in order to inhibit OA disease progres-
sion. In the future, activating SIRT 1 via resveratrol with improved bioavailability may be an
appropriate therapeutic approach for OA.

Introduction
Osteoarthitis (OA), the most common aging-related joint pathology, is characterized by articular cartilage
destruction along with changes occurring in other joint components, including bone, menisci, synovium,
ligaments, capsule, and muscles [1]. In western populations, OA is one of the most frequent causes of pain,
loss of function, and disability in adults [2]. The etiology of OA is mostly unclear, but several factors are
suggested to be involved in the pathogenesis of OA, including mechanical, genetic, and aging-associated
factors that ultimately lead to synovitis, apoptosis, and cartilage destruction. Advanced age is the greatest
risk factor for OA [3]. Radiographic evidence of OA occurs in the majority of people by 65 years of age
and in about 80% of those aged over 75 years [2]. The aging-related changes in joint tissues that contribute
to the development of OA include cell senescence and aging changes in the extracellular matrix [4]. The
sirtuins (SIRTs) family is a well-known group of antiaging genes [5]. It has been recently confirmed that the
Silent information regulator 2 type 1 (also known as sirtuin 1 [SIRT 1]) is linked to various age-associated
diseases such as obesity, type 2 diabetes, cardiovascular disease, cancer, dementia, arthritis, osteoporosis,
as well as with OA [6]. It is essential to elucidate the roles of SIRT 1 and its natural activator, resveratrol,
in the pathogenesis of OA in order to develop new successful approaches to the treatment of OA.
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Structure and basic function of SIRT 1
Nicotinamide adenine dinucleotide (NAD+) is a classical coenzyme mediating many redox reactions and an essential
compound for many enzymatic processes [7]. In redox reactions, cellular levels of NAD+ are an important indicator
of the cellular energy status; NAD+ can readily switch from the electron accepting form (oxidizing) NAD+ to the
electron-donating form (reducing) NADH and vice versa [8]. SIRT 1 is an NAD+-dependent protein deacetylase and
is a master metabolic regulator in different metabolic tissues [9].

The SIRTs are members of the silent information regulator 2 (SIR 2) family of highly conserved NAD+-dependent
histone/protein deacetylases; they are a pivotal regulator of longevity and health span [10]. The SIRTs are associ-
ated with numerous cellular signaling pathways that include anti-inflammation, senescence, apoptosis, DNA damage
repair, autophagy, and regulation metabolism in response to the cellular energy and redox status [11]. There are
seven mammalian sirtuins, SIRT 1–7. SIRT 1 and SIRT 2 are localized in the nucleus and cytoplasm; SIRT 3, SIRT
4, and SIRT 5 are mitochondrial; and SIRT 6 and SIRT 7 are nuclear [12]. Each sirtuin contains a highly conserved
catalytic core domain of approximately 275 amino acids which functions as a NAD+-dependent deacetylase and/or
ADP-ribosyltransferase [13]. SIRT 1, the most-conserved mammalian NAD+-dependent protein deacetylase shares
closest homology to yeast SIR 2. SIRT 1 splits NAD+ into nicotinamide and ADP-ribose, then transfers the acetyl
group from the protein substrate to the 20-OH group of the ribose ring in the ADP-ribose molecule [9]. Histone
deacetylases, in particular the sirtuin family with SIRT 1 as the major player, have long been linked to aging [14]. SIRT
1 is related to multiple age-associated diseases on account of its capacity to deacetylate histones and non-histone pro-
teins such as tumor protein p53 (p53), kB-gene binding nuclear factor (NF-κB), heat shock factor 1 (HSF1), forkhead
box transcription factor, class O (FOXOs), and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1
(PGC-1); thus, it’s able to regulate the cell’s biology, metabolism, and fate at different levels [15]. In mammalian cells,
nutrient availability regulates the lifespan; p53, FOXO3a, and SIRT 1 – three proteins separately implicated in aging
– constitute a nutrient-sensing pathway [16].

Resveratrol is a polyphenol found in the skin of red grapes and various other fruits, wines, peanuts, and root
extracts of the weed Polygonum cuspidatum. It is thought to harbor major health benefits and is reported to be a
substrate-specific activator of yeast SIR 2 and human SIRT 1 in vivo and in vitro [17]. Resveratrol is the most potent
natural compound that activates SIRT 1, mimicking the positive effects of calorie restriction. In yeast, resveratrol
mimics calorie restriction and increases DNA stability and extending lifespan by 70% [18]. In addition, resveratrol
has shown to increase the lifespan of three model organisms through a SIR 2-dependent pathway [17,19]. Resver-
atrol increases cell survival by stimulating SIRT 1-dependent deacetylation of p53 [18]. Currently, aims to develop
resveratrol with better bioavailability and targeting SIRT 1 at lower concentrations have shown promise [18].

Expression of SIRT 1 in OA
The articular cartilage is an avascular, aneural, alymphatic, and viscoelastic connective tissue that derives its nutri-
tion and oxygen supply by diffusion from the synovial fluid; along with subchondral bone, the articular cartilage is
maintained at a low oxygen environment throughout life [20,21]. Chondrocytes are the only resident cells found in
cartilage and are responsible for both the synthesis and turnover of the abundant extracellular matrix (ECM). Artic-
ular chondrocytes exhibit an age-related decline in their proliferative and synthetic capacity while maintaining the
ability to produce pro-inflammatory mediators and matrices-degrading enzymes [22]. These findings are character-
istic of the senescent secretory phenotype and are most likely a consequence of extrinsic stress-induced senescence
driven by oxidative stress, rather than intrinsic replicative senescence. ECM changes, including the accumulation of
proteins modified by non-enzymatic glycation, contribute to the propensity of developing OA [22,23].

Expression of the SIRT 1 protein is present in the nuclei of chondrocytes in all layers of the cartilage tissue as
well as in synovial tissues [24,25]. All catabolic, mechanical, and nutritional stresses inhibit SIRT 1 expression [24].
Tumor necrosis factor-α (TNF-α), the main proinflammatory factor, could induce SIRT1 cleavage and reduce SIRT1
activity [26]. Oxidative stress-induced reduction of SIRT1 through post-translational modifications decrease SIRT1
activity and mark the protein for proteasomal degradation [27]. Accordingly, treatment with H2O2 results in the
down-regulation of SIRT1 protein expression [28]. On the other hand, activation of the SIRT1 and related signaling
pathway attenuates mitochondrial dysfunction and biogenesis [29], and defends against oxidative stress in articular
chondrocytes [28].

It has been confirmed that SIRT 1 protein expression decreases in severely degenerated human cartilage, leading
chondrocytes to hypertrophy and degeneration [30]. In patients with knee OA, expression levels of SIRT 1 are de-
creased in the articular cartilage (the lateral and medial sides of the tibia plateau including the loading zone and the
margin zone) and is negatively associated with OA disease severity [30,31]. Moreover, SIRT 1’s downstream gene
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p53 expression and its acetylation level were dramatically increased in knee OA cartilage and is positively related
to OA severity [31]. However, SIRT 1 expression was significantly reduced in human osteoarthritic subchondral os-
teoblasts compared with normal [32]. In contrast, SIRT 1 activity (cytoplasmic and nuclear) from peripheral blood
mononuclear cells did not correlate with OA patients’ clinical activity (Lequesne’s index) or inflammation (erythro-
cyte sedimentation rate, C-reactive protein); in fact, it did not differ between patients with OA and healthy controls
but instead correlates with the baseline interleukin (IL) -6 [33]. In wild-type mice with experimental knee OA, SIRT
1-positive chondrocytes are distributed from the superficial to the deep zone of the cartilage. Here, levels of SIRT 1
protein first increased but then gradually decreased with aging [34]. Synovial fluid from OA patients may contain
proinflammatory cytokines including TNF-α, which could generate a stable and enzymatically inactive 75-kd form
of SIRT 1. When human chondrocytes were exposed to OA-derived synovial fluid, the 75-kd SIRT 1 fragment was
indeed generated, and levels of 75-kd SIRT 1 was elevated in OA versus normal chondrocytes [35].

Effect of SIRT 1 in OA
SIRT 1 regulates ECM
SIRT 1 seemsmicroM to play a predominant regulatory role in OA [36]. Expression of SIRT 1 in chondrocytes led to
increased chondrocyte survival in either the presence or absence of TNF-α/actinomycin D [37]. Elevation of SIRT
1 protein levels or activity in human OA chondrocytes led to a dramatic increase in cartilage-specific gene (collagen
II and aggrecan) expression; accordingly, 3D human chondrocytes present with both increased cellular SIRT1 enzy-
matic activity and COL2A1 expression [38,39]. Reduced expression of COL2A1 mRNA and type II collagen protein
in human chondrocytes correlates with decreased SIRT 1 activity [39]. Another study confirmed SIRT 1 inhibition
increases COL10A1 and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs) expression
while decreasing aggrecan expression [30]. It was discovered recently that glucosamine (GlcN) exhibits chondropro-
tective action on OA by enhancing the mRNA expression and protein levels of SIRT 1 and its downstream gene
COL2A1 in chondrocytes [40].

SIRT 1 promotes MSCs differentiation
SIRT 1 is required for promoting chondrogenic differentiation of mesenchymal stem cells (MSCs) [41]. It’s well known
that sex determining region Y box protein 9 (SOX9) and runt-related transcription factor 2 (RUNX2) are the pivotal
transcription factors in adult cartilage development [42]. SIRT 1 supports the chondrogenic development of MSCs
at least in part through the inhibition/deacetylation of NF-κB and activation of SOX9 in vitro [41]. SIRT 1 may reg-
ulate the expression of RUNX2 and the production of matrix metalloproteinase (MMP) 13 from chondrocytes to
adjust the hypertrophic chondrocyte lineage and degeneration of articular cartilage [43]. SIRT 1 deacetylates PPARγ
and SOX9 to control the vav guanine nucleotide exchange factor 1 (Vav1), regulating MSC cell fate decisions for
adipocyte and chondrocyte differentiation [44]. SIRT 1 is a major contributor of SOX9 deacetylation; the deacety-
lated state of SOX9 enables its importation to the nucleus and supports its transcriptional activity and transactivation
of aggrecan [45]. SIRT 1 is active in the cartilage-specific transcription factor SOX9 and is dependent on NAD. In-
hibition of nicotinamide phosphoribosyltransferase (NAMPT) leads to reductions in NAD levels, SIRT activity, and
cartilage-specific gene expression. Therefore, SIRT 1, NAMPT, and NAD may provide a positive function in human
cartilage by elevating the expression of genes encoding cartilage ECM [38]. SIRT 1 is also a key regulator of chon-
drocytes’ phenotype; IL-1β induces the de-differentiation of articular chondrocytes by the up-regulation of SIRT 1
activity enhanced by both NAMPT and extracellular signal-regulated kinases (ERK) signaling [46]. Decreased SIRT 1
in OA might lead chondrocytes to hypertrophy and degenerate [30]. SIRT1 plays an important role in MSCs’ differen-
tiation and resistance to H2O2-induced oxidative stress during bone marrow-derived MSC (BM-MSC) osteogenesis
[47,48]. In the SIRT1 RNAi cell model, knocking down the SIRT1 gene induced the Wnt signaling pathway, leading to
the inhibition and decrease of cartilaginous proliferation and differentiation, but increasing apoptosis in ATDC5 cells
[49]. Increased SIRT1 could inhibit adipogenesis and stimulate myogenic differentiation in MSCs through activating
Wnt/β-catenin signaling [50,51]. Other factors were also involved in the process of SIRT1 regulation of MSC, such as
the activation of the adenosine monophosphate-activated protein kinase (AMPK)-SIRT1 signaling pathway as well as
beneficial mechanical stretch to induce antioxidant responses, attenuate intracellular reactive oxygen species (ROS),
and improve osteogenesis of human BM-MSCs [52]. In mice, Sirt1 promotes MSC proliferation and osteogenic dif-
ferentiation and inhibits MSC senescence via Bmi1 activation; therefore, treatment with resveratrol could promote
bone formation and prevent bone loss [53]. SIRT1 was also directly involved in the regulation of beige adipocyte
differentiation. Elevated SIRT1 prevents elderly adipose tissue-derived MSCs from entering senescence and restores
the beige differentiation ability via the p53/p21 pathway [54].
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Anti-catabolic and anti-inflammatory effects
Previous studies confirmed that SIRT 1 exhibits anti-catabolic and anti-inflammatory effects in OA. Secreted inflam-
matory molecules, in particular the two major proinflammatory cytokines IL-1β and TNF-α, control the degenera-
tion of articular cartilage matrix [55,56]. SIRT 1 and TNF-α appear to have opposing effects on cartilage gene expres-
sion; SIRT 1 expression or activity may be blocked in part by TNF-α [26]. TNF-α mediates the proteolytic cleavage of
SIRT 1, producing a stable 75-kd SIRT 1 fragment that is incapable of binding chromatin and chromatin-associated
coactivators, such as PGC-1 and SOX9 [26]. After the exposure of human chondrocytes to TNF-α, 75-kd SIRT 1 was
exported to the cytoplasm and co-localized with the mitochondrial membrane, where the 75-kd SIRT 1 plays the
role of preventing cell death through its enhanced association with cytochrome on the mitochondrial membrane to
block downstream apoptosis by preventing apoptosome assembly and subsequent caspase 3 activation; 75-kd SIRT 1
is capable of promoting cell survival through an enzymatically independent mechanism [35]. Cartilage destruction in
OA is thought to be mediated by two main enzyme families: the MMP enzymes are responsible for cartilage collagen
breakdown, whereas the enzymes from the ADAMTS family mediate cartilage aggrecan loss [57]. Overexpression of
SIRT 1 in human chondrocytes leads to the repression of MMP 3, -8, and -13 and ADAMTS 4 gene expression, and
down-regulating SIRT 1 leads to the induction of MMP 13 [58]. In human chondrocytes treated with IL-1β, SIRT 1
can play a protective role by suppressing IL-1β-induced expression of cartilage-degrading enzymes such as ADAMTS
5, MMP 1, 2, 9, and 13 partially through the modulation of the NF-κB (p65) pathway [59]. When chondrocytes are
incubated with TNF-α, SIRT 1 also activates, deacetylates, and inactivates NF-κB p65 to exert an inhibitive effect on
the expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and MMPs [60]. In human chondrocytes,
fisetin inhibits IL-1β-induced expression of nitric oxide (NO), PGE2, TNF-α, IL-6, COX-2, inducible nitric oxide
synthase (iNOS), MMP 3, MMP 13, ADAMTS 5, and remarkably suppressed the degradation of SOX9, aggrecan, and
collagen-II; it exerts all these anti-inflammatory effects through activating SIRT 1 [61]. Silencing of microRNA-449a
shows a protective effect via targeting SIRT 1 to inhibit catabolic gene expression, restoring anabolic gene expression
in IL-1β-induced cartilage destruction [62].

Anti-oxidative stress
SIRT 1 is strongly involved in the process of melatonin’s cytoprotective and anti-inflammatory effects in oxidative
stress-stimulated chondrocytes. When oxidative stress induces senescence in chondrocytes, SIRT 1 enables chon-
drocytes to cope with unfavorable growing conditions. The mRNA of SIRT 1 was up-regulated after oxidant in-
sult, but decreased in aging cells [63]. Expression of SIRT 1 could be induced by H2O2, and melatonin was con-
firmed to have the effect of decreasing SIRT 1 in chondrocytes [64]. Inhibiting SIRT 1 reversed the effects of
melatonin on H2O2-mediated induction of proinflammatory cytokines (NO, PGE2, TNF-α, IL-1β, and IL-8) and
the expression of iNOS and COX-2. Moreover, decreased SIRT 1 reversed the effects of melatonin, blocking the
H2O2-induced phosphorylation of phosphoinositide 3-kinases (PI3K)/Akt, p38, ERK, C-Jun-N-terminal kinase
(JNK), and mitogen-activated protein kinase (MAPK), as well as the activation of NF-κB [64]. In chondrocytes stim-
ulated by oxidative stress, MiR-9 was identified and confirmed to be a post-transcriptional regulator of SIRT 1; MiR-9
silencing inhibits cell death, induced by H2O2 partly through down-regulation of SIRT 1 [65]. In H2O2-treated rat
chondrocytes, rutin effectively inhibits the activation of inflammatory cytokines and MMP 2/9 by increasing SIRT 1,
leading to the down-regulation of NF-kB/ MAPK, COX-2, and iNOS [28].

Anti-apoptosis and participation in autophagy
Autophagy participates in the OA development and regulates changes in OA-like gene expression through modu-
lation of apoptosis and ROS as a protective process [66]. SIRT 1 is also in involved in this progress. Hydroxytyrosol
stimulates autophagy and offers protection from oxidative stress-induced cell death in a SIRT 1-dependent manner by
increasing p62 transcription [67]. SIRT 1 is an anti-apoptotic protein in human chondrocytes on account of its enzy-
matic activity: expression of SIRT 1 leads to activation of the insulin-like growth factor (IGF) receptor (IGFR) and the
downstream kinases PI3K, pyruvate dehydrogenase kinase 1 (PDK1), mammalian target of rapamycin (mTOR), and
Akt, ultimately resulting in the phosphorylation of mouse double minute 2 homolog (MDM2), inhibition of p53, and
blocking apoptosis [37]. Furthermore, in human chondrocytes, SIRT 1 regulates apoptosis through the modulation
of mitochondria-related apoptotic signals via translocation of Bax and Bcl-2 (SIRT 1 inhibition increases the amount
of Bax and reduces the amount of Bcl-2). However, the increased NO-induced apoptosis by SIRT 1 inhibition is me-
diated by the activation of caspases 3 and 9, but is independent of the caspase 8 pathway [24]. Both AMPK and SIRT
1 are strong inducers of autophagy. Meanwhile, homeostasis of mitochondrial mass through mitochondrial is main-
tained through biogenesis and mitophagy. In human OA chondrocytes, mitochondrial biogenesis is deficient, which
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is linked to reduced AMPK activity and decreased expression of SIRT 1. Activation of the AMPK/SIRT-1/PGC-1a
pathway reversed the impaired mitochondrial biogenesis capacity in cultured human OA chondrocytes [68]. The
SIRT 1/p53 signaling pathway showed direct involvement in the miR-34a regulation, apoptosis, and inhibition of cell
proliferation in human chondrocytes [69]. In the process of ionizing radiation (IR) induction of cellular senescence of
chondrocytes, the role that IR plays is negative post-translational regulation of SIRT 1 via ROS-dependent p38 kinase
activation; up-regulation of SIRT 1 distinctly reduces the IR-induced senescence phenotype and vice versa [70].

Other effects
In cartilage homeostasis, SIRT 1 also mediates the key clock gene expression with pathophysiological implications. In
human knee OA cartilage, the levels of both NAD+ and Bmal 1, a circadian rhythm gene, were decreased significantly,
resulting in the inhibition of NAMPT activity and SIRT 1 expression. Inhibition of SIRT 1 not only resulted in a
reduction of Bmal1 and a moderate increase of period 2 (per2) and Rev-Erb α, but also further exacerbated the
survival of cells with the expression of cartilage matrix-degrading enzymes induced by IL-1β [71].

OA affects all joint components, not only the cartilage, but also the bone, synovium, and so on. SIRT 1 also plays
an important role in bone homeostasis. SIRT 1 is a genetic determinant of bone mass: the lack of SIRT 1 promotes
osteoclastogenesis in osteoclasts in vitro and reduces osteoblast differentiation in osteoblasts through the control of
NF-κB and bone cell differentiation [72]. Decreased SIRT 1 levels were found in human osteoarthritic subchondral
osteoblasts [32]. In addition, Calcar SIRT 1 expression in the osteoporotic femoral neck (calcar region) was signifi-
cantly reduced while sclerostin was markedly increased, showing that SIRT 1 and sclersotin expression are inversely
correlated [73]. Inhibition of SIRT 1 in osteoblasts leads to increased transforming growth factor-β1 (TGF-β1) and
sclerostin expression that decreases Wnt/β-catenin activity; conversely, the stimulation of SIRT 1 reduces the expres-
sion of TGF-β1 and sclerostin, as well as increases the mineralization in OA osteoblasts [73]. Wnt/β-catenin signaling
is important for normal bone homeostasis and function; osteoblasts and osteoclasts are affected by decreased scle-
rostin, the inhibitor of the Wnt/β-catenin signaling, and a SIRT 1 target [32]. The expression and production of SIRT
1 were decreased in OA subchondral bone tissue [74]. SIRT 1 may regulate apoptosis and ECM degradation via the
Wnt/β-catenin signaling pathway in OA chondrocytes [75]. SIRT 1 can regulate the bone marrow adipocyte pheno-
type, inducing a thermogenic gene program in mouse and human BM-MSCs via sclerostin inhibition [76]. Due to the
relationship between SIRT 1 and Wnt/β-catenin signaling, the disruptor of telomeric silencing 1-like (DOT1L) could
directly control Wnt signaling by inhibiting the activity of SIRT1, playing the role of safeguarding the homeostasis in
cartilage and protecting against OA [77]. In the process of deletion of the oxygen sensor prolyl hydroxylase (PHD)
2 in osteocytes, the enhanced SIRT1 activates the WNT/β-catenin signaling and decreases the sclerostin, leading to
increased osteoblast number and activity while decreasing osteoclastogenesis and bone resorption. However, the ex-
pression and effects of SIRT 1 in osteoarthritic subchondral bone and synovium needs to be further investigated, the
related mechanism of SIRT 1 in OA was shown in Figure 1.

SIRT 1 in OA animal models
SIRT 1 has shown the ability to regulate the osteogenesis and adipogenesis of MSCs. MSC specific SIRT 1 knock-out
(MSCKO) mice confirms that SIRT 1 regulates differentiation of MSCs by deacetylating β-catenin: MSCs isolated
from MSCKO mice show reduced differentiation towards osteoblasts and chondrocytes in vitro [79]. In parathyroid
hormone-related protein 1–84 [PTHrP(1–84)] knockin mice, Bmi-1 alters the BM-MSCs fate by enhancing osteoblast
differentiation and inhibiting adipocyte differentiation, at least in part by stimulating SIRT 1 expression [80].

SIRT 1 and its enzymatic activity play a protective role in normal development and homeostasis of cartilage in
vivo [81]. In the haploinsufficient SIRT 1 total body knockout (KO) mice, SIRT 1 KO mice exhibit cartilage defects
that are consistent with their reduced size. SIRT 1 KO mice cartilage exhibit low levels of type II collagen, aggrecan,
and glycosaminoglycan content in their paws; however, they exhibit elevated levels of MMP 13 and protein tyrosine
phosphatase (PTP1B) in cartilage compamicroMred with wild-type (WT) mice [82]. Nevertheless, in the homozy-
gous SIRT-1tm2.1Mcby (SIRT-1y/y) mice of OA models, the cartilage tissue changes are in line with previous reports.
Moreover, bone defects (subchondral bone had less trabecular bone volume and thicker trabeculamicroM) and mod-
erate local inflammations of the joint were also demonstrated in SIRT 1y/y mice [81]. In the SIRT 1−/− mice, MMP
13 and lymphoid enhancer-binding factor 1 (LEF1) appear to be elevated in the articular cartilage; activation of SIRT
1 plays a positive role in reducing the severity of OA, in part through its ability to repress the expression of MMPs
[58]. Adult (9 month-old) heterozygous haploinsufficient SIRT 1 (+/−) mice showed decreased levels of aggrecan
and other proteoglycans, but increased OA and levels of apoptosis compared with age-matched WT mice. Levels of
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Figure 1. The mechanism of SIRT 1 and related pathway in OA

→ means there is a direct effect on the other, ↔ means there is an interaction between the both sides, means there is an active

effect on the other.

full-length SIRT 1 were further decreased in both strains at 9 months. A 75 kDa SIRT 1 was found in 9-month-old
WT mice; however, it was not detected in age-matched SIRT 1 (+/−) mice [83].

Activation SIRT 1 inhibits the OA progress via resveratrol
Resveratrol, a SIRT 1 activator, can protect chondrocytes against OA development. Resveratrol increased SIRT 1 pro-
tein expression in a dose-dependent manner: at concentrations of 25 and/or 50μM, resveratrol treatment significantly
up-regulates SIRT 1 gene expression in normal and osteoarthritic chondrocytes [84]. This was blocked by the SIRT
1 inhibitor, sirtinol, which inhibits TNF-α-induced inflammatory factor COX-2 and MMPs release, as well as ECM
degradation [46], Resveratrol protects the chondrocytes from IL-1β stimulation in a dose-dependent manner via its
activation of SIRT 1 [85]. The inhibition of SIRT 1 enhances NO-induced apoptosis of human chondrocytes, and
resveratrol inhibits this NO-induced apoptosis. Resveratrol reduced the amount of Bax and increased the amount
of Bcl-2 in the mitochondrial fraction [24]. In rabbit with OA, intra-articular injection of melatonin significantly
reduced cartilage degradation, which was reversed by sirtinol [64].
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In human chondrocytes, the overexpression of SIRT1 plays a protective role through the NF-kB pathway, reducing
the up-regulation of MMP 1, 2, 9, 13, and ADAMTS 5 genes caused by IL-1b [59]. Moreover, up-regulation of SIRT1
or treatment with the SIRT1 activator resveratrol could affect NF-kB expression caused by TNF-a in order to exert an
anti-inflammatory effect on human chondrocytes [60]. Meanwhile, the elevation of SIRT1 positively affects cartilage
genes including collagen 2a, collagen 2b, and aggrecan expression [38]. SIRT 1 up-regulation could also suppress OA
chondrocyte apoptosis and ECM degradation through increasing Bcl-2 and decreasing Bax, MMP 1, and MMP 13
expression via the inhibition of p38, JNK, and ERK phosphorylation [86].

In experimental OA mice, treatment with the SIRT1 activator SRT1720 could attenuate OA development though
inhibiting synovitis, partially inhibiting the declined COL2A1 and aggrecan, and decreasing MMP 13, ADAMTS 5,
cleaved caspase 3, PARP p85, and acetylated NF-κB p65-positive chondrocytes [87]. Silencing miR-449a leads to the
up-regulation of SIRT 1, promoting cartilage regeneration and preventing progression of OA in rat models [88].

In a double-blind, randomized control trial which included 110 people with mild-to-moderate knee OA in Iraq,
the patient–subjects received 15 mg meloxicam and either 500 mg resveratrol or placebo per day for 90 days. The
results showed that the pain severity and serum levels of biochemical markers were significantly decreased in the
resveratrol-treated group compared with the placebo-treated group [89]. The study further showed that resveratrol
significantly improved function and associated symptoms. 500 mg/day of resveratrol was safe and well-tolerated by
the knee OA patients [90]. In France, a protocol for a multicenter randomized double-blind placebo-controlled trial
to evaluate the knee OA patients’ pain after 3 months of taking oral resveratrol was published but the proceedings
and the results have yet to be determined [91]. Consequently, the therapeutic effects of resveratrol or other SIRT 1
activators in practice require further investigation and validation in clinical trials.

Conclusion
The greatest risk factor for OA is age. SIRT 1 is decreased with OA disease development in osteoarthritic carti-
lage. SIRT 1 can regulate ECM expression; promote MSCs differentiation; play anti-catabolic, anti-inflammatory,
anti-oxidative stress, and anti-apoptosis roles; participate in the autophagic process; and regulate bone homeostasis
in OA. Resveratrol activates SIRT 1 to inhibit the OA progress, in the future, activating SIRT 1 via resveratrol with
better bioavailability may be an appropriate therapeutic approach for OA.
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