Incubation of human bloodstream neutrophils with 50 u/ml recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) “primed” the respiratory burst (as assessed by fMet-Leu-Phe stimulated luminol-dependent chemiluminescence) and resulted in a rapid (within 15 min) upregulation of expression of CD11b and CD18 (as measured by FACS analysis). This rapid “priming” and modulation of receptor expression was not inhibited by cycloheximide and hence appeared to be independent of de novo protein biosynthesis. When neutrophils were incubated for up to 5 h in culture, the fluorescence distributions of CD11b and CD18 declined indicating the loss of expression of these receptors as the neutrophils aged, but in rGM-CSF treated suspensions receptor expression was maintained. When neutrophils were incubated in the presence of cycloheximide, they progressively lost their ability to generate reactive oxidants in response to fMet-Leu-Phe so that by 5 h incubation with this inhibitor they could only generate about 25% of the oxidative response stimulated in untreated cells, and the expression of CD16 and CD18 was grossly impaired. Similar effects were observed in rGM-CSF treated suspensions except that cycloheximide required longer incubation times (typically 4–5 h) before impairment of function or receptor expression occurred. These data show that de novo protein biosynthesis is required for both the maintenance of neutrophil function and also for the continued expression of some plasma membrane receptors.

Abbreviations fMet-Leu-Phe, N-formylmethionyl-Leucyl-Phenylalanine; rGM-CSF, recombinant granulocyte-macrophage colony-stimulating factor; FITC, fluorescein isothiocyanate conjugate; Luminol, 5-amino-2,3-dihydrophthalazine-1,4-dione

This content is only available as a PDF.