This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis of Dictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.

A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.

This content is only available as a PDF.