A hyperthermic shift in the hyperchromicity curve of thermally denatured swine aortic-smooth-muscle-cell chromatin solubilized by digestion of nuclei with micrococcal nuclease was observed after the chromatin was incubated under conditions to allow poly(ADP-ribose) synthesis by the endogenous poly(ADP-ribose) polymerase. When the order of solubilization and poly(ADP-ribosyl)ation was reversed, a smaller proportion of the solubilized chromatin exhibited greater thermal stability. Nuclease digestion of nuclei preincubated for poly(ADP-ribose) synthesis revealed no difference in kinetics of digestion or fragment size distribution compared to that of control nuclei. Poly(ADP-ribose) synthesis in these nuclei was proportionately greater in the chromatin fraction most resistant to solubilization by micrococcal nuclease treatment.

This content is only available as a PDF.