Hepatocellular carcinoma (HCC) has been one of the most highly lethal cancers. The acquisition of drug resistance accounts for the majority of poor effects of chemotherapy in HCC. Non-coding RNAs (ncRNAs) including miRNAs, long ncRNAs (lncRNAs), and circular RNA (circRNA) have been well-documented to participate in cancer occurrence and progression. Recently, multiple studies have highlighted the key roles of ncRNAs in chemoresistance of HCC. In addition, accumulating evidence has demonstrated that they can serve as biomarkers in diagnosis, treatment, and prognosis of HCC. In this review, we first overviewed up-to-date findings regarding miRNA and lncRNA in drug resistance of HCC, then summarized specific mechanisms that they modulate chemoresistance of HCC, and finally discussed their potential clinical application in overcoming the obstacle of HCC chemoresistance in the future.

Introduction

Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers and the second leading cause of cancer-related deaths amongst males worldwide, which is largely caused by chronic hepatitis B virus (HBV) infection [1]. In parts of Western countries, the mortality of HCC continues to grow and seriously affects public health [1]. In general, many treatments are curative for early HCC, such as transplantation, surgical resection, and chemotherapy [2]. However, the absence of obvious early symptoms results in most HCC cases being first diagnosed at advanced stage. The principal therapeutic agent for advanced HCC, sorafenib, is greatly limited by its drug-resistance [3,4].

Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins. It is well recognized that ncRNA makes up a vast majority of cellular RNAs, accounting for greater than 90% of human RNAs [5]. Recent studies have shown that ncRNAs, just as important as proteins, act as underlying players in multiple cellular processes, such as cell proliferation, migration, apoptosis and angiogenesis, and immune response [6]. Non-coding variants are closely linked to most of common diseases, such as human cancers [7]. Additionally, ncRNAs are involved in drug resistance in multiple types of cancer including HCC [8]. The majority of ncRNAs involved in drug resistance are miRNAs and long ncRNAs (lncRNAs) [9]. miRNAs are a class of non-coding single stranded RNA molecules, which are constituted by approximately 22 nucleotides. Recent studies have found an association between miRNAs and drug resistance in HCC [10–14]. LncRNAs are ncRNAs with a length more than 200 nucleotides, which have been shown to interplay with multiple ‘biological elements’ including DNA, RNA, and protein [15]. Through these approaches, lncRNAs exert their effects in various physiological and pathobiological processes like autophagy and metastasis [16–18]. Additionally, lncRNAs also mediate chemoresistance of HCC, offering a new diagnostic marker and therapeutic target for HCC [19, 20]. In addition to miRNA and lncRNA, another type of non-coding RNA- circular RNA (circRNA) has been recently entered into the eyes of researches and scholars. It has been reported to act as a sponge for miRNAs, thereby participating in a series of biological and pathological processes as well as drug resistance [21]. Herein, this review summarized the relationship between ncRNAs and drug resistance of HCC.

MiRNAs

miRNA and multidrug resistance

Multidrug resistance

During the long-term of traditional chemotherapy for HCC, multidrug resistance (MDR) occurs frequently, leading to the relapse of cancer and intractable tumor [22]. Many mechanisms contribute to this resistance. One is that cancer cells enhance the ability of the efflux of hydrophobic cytotoxic drugs [23], partly through overexpression of ATP-binding cassette (ABC) transporters family, including P-glycoprotein (P-gp) and MDR-associated protein (MRP) [24–27], and decrease the uptake of hydrophilic drugs like cisplatin [28]. Recent investigations have shown that 170 kd membrane glycoprotein (170 GP) also has a close relationship with MDR [29]. Another crucial mechanistic branch leading to MDR is resistant to cell apoptosis. For example, wild-type p53 (wt-p53) gene re-sensitizes Bel-7402 cells to VCR chemotherapy [30]. Furthermore, wt-p53 regulates expression of genes of enzymes to mediate function such as activation of pro-drugs, inactivation of active agents, DNA damage repair, modification of stem cells, metabolic alterations, and microenvironment change [14,23,28,31,32]. Various kinds of pathways are related to chemoresistant phenotypes in tumor such as TRPC6/calcium/STAT3 pathway in HCC [33].

Dysregulated miRNAs related with MDR in the treatment of HCC

miRNAs in HCC

MiR-122 could not only adverse to cisplatin resistance in cisplatin-treated HepG2 cells [34], but also make HCC cells re-sensitize to adriamycin (ADM) and vincristine by down-regulating MDR related genes, such as MDR-1, MRP, GST-pi [35]. In another study, Wu et al. [36] have found a novel regulatory pathway (Hnf4α/miR-122/GALNT10) that could increase sensitivity of cancer cells to doxorubicin and sorafenib. MiR-223 could decrease expression of ABCB1 at both mRNA and protein levels, which could decrease doxorubicin IC50 dose of HCC cells [37]. MiR-216b regulated MDR of HCC via mediating modification of autophagy through HIF-2α-MALAT1-miR-216b axis [38]. One study has found that miR-27a might reverse chemoresistance in HCC by inhibiting FZD7/β-catenin pathway [39]. MiR-612 mediated the function of anti-MDR also through β-catenin pathway, and finally relieved 5-fluorouracil (5-FU) and cisplatin resistance [40]. Furthermore, miR-34a could also re-sensitize the effect of radiotherapy by inhibiting LDHA [41]. Zhao et al. [42] demonstrated that miR-491-3p/Sp3/ABCB1 axis could offer a new pathway for chemotherapy of HCC. Up-regulation of miR-503 suppressed HCC cells proliferation, sensitized HCC cells to chemotherapeutic agents like 5-FU [43], moreover, reversed ADM and cisplatin resistance [44,45]. Besides, miR-137 [46], miR-205-5P [47], and miR-27b [48] also have shown a low expression and close correlation with chemoresistance in HCC. Let-7 family consists of 11 closely related genes. Most of them acted as tumor suppressor like Let-7g [49]. Let-7g increased the effectiveness of fluorouracil in treating Bel-7402/5-Fu by targeting on the HMGA2 gene. However, some Let-7 family members were up-regulated in certain tumors and promoted tumor progression, like Let-7a in HCC [50]. Besides, miR-199a could not only increase sensitivity to cisplatin via enhancement of autophagy by targeting autophagy-associated gene 7(ATG7) [51], but also increase doxorubicin sensitivity of HCC cells by regulating mammalian target of rapamycin (mTOR) and c-Met [52] (Table,1).

Table 1
Summary of miRNAs involved in multiple drug resistance in HCC
DysregulationmiRNAPathway/targetCorresponding drugsReferences
Down-regulated miR-122 MDR-1, GST-pi, MRP, Bcl-w, cyclinB; Hnf4α/miR-122/GALNT10 pathway Adriamycin; vincristine; sorafenib; doxcrubicin; cisplatin [34–36
miR-223 ABC1 Doxorubicin; paclitaxel [37
miR-216b HIF-2α-MALAT1-miR-216b 5-FU; adriamycin; cisplatin; Mitomycin C [38
miR-27a FZD7/β-catenin pathway 5-FU; adriamycin; Mitomycin C [39
miR-612 Wnt/β-catenin signaling Cisplatin; 5-FU [40
miR-491-3p miR-491-3p/Sp3/ABCB1 axis Doxorubicin; vinblastine [42
miR-503 EIF4E 5-FU; adriamycin; cisplatin [43–45
miR-137 FBI-1 Adriamycin [46
miR-205-5P PTEN/JNK/ANXA3 pathway 5-FU [47
miR-27b p53; CYP1B1 Doxorubicin; sorafenib; Epirubicin [48
Let-7 g HMGA2 gene 5-FU [49
miR-199a (3p/5p) ATG7; mTOR and c-Met 5-FU; doxorubicin [51, 52
Up-regulated Let-7a Caspase-3I Interferon-γ; doxorubicin; paclitaxel [50
miR-21 PETN, PDCD4 Interferon-α; 5-Fu; cisplatin [34, 53
miR-183 IDH2/SOCS6-HIF-1α 5-FU [54
DysregulationmiRNAPathway/targetCorresponding drugsReferences
Down-regulated miR-122 MDR-1, GST-pi, MRP, Bcl-w, cyclinB; Hnf4α/miR-122/GALNT10 pathway Adriamycin; vincristine; sorafenib; doxcrubicin; cisplatin [34–36
miR-223 ABC1 Doxorubicin; paclitaxel [37
miR-216b HIF-2α-MALAT1-miR-216b 5-FU; adriamycin; cisplatin; Mitomycin C [38
miR-27a FZD7/β-catenin pathway 5-FU; adriamycin; Mitomycin C [39
miR-612 Wnt/β-catenin signaling Cisplatin; 5-FU [40
miR-491-3p miR-491-3p/Sp3/ABCB1 axis Doxorubicin; vinblastine [42
miR-503 EIF4E 5-FU; adriamycin; cisplatin [43–45
miR-137 FBI-1 Adriamycin [46
miR-205-5P PTEN/JNK/ANXA3 pathway 5-FU [47
miR-27b p53; CYP1B1 Doxorubicin; sorafenib; Epirubicin [48
Let-7 g HMGA2 gene 5-FU [49
miR-199a (3p/5p) ATG7; mTOR and c-Met 5-FU; doxorubicin [51, 52
Up-regulated Let-7a Caspase-3I Interferon-γ; doxorubicin; paclitaxel [50
miR-21 PETN, PDCD4 Interferon-α; 5-Fu; cisplatin [34, 53
miR-183 IDH2/SOCS6-HIF-1α 5-FU [54
Up-regulated miRNAs in HCC

MiR-21 plays a vital role in modulating anti-tumor effect of 5-FU and interferon (IFN)-α on HCC cell lines and clinical patients with HCC [53]. The team of Wang and co-workers suggested that miR-183 promoted MDR in HCC cells by regulating miR-183-IDH2/SOCS6-HIF-1α feedback loop. Both miR-183 knockdown and SOCS6 overexpression sensitized BEL-7402/5-FU cells to 5-FU [54].

miRNAs mediate single drug resistance of HCC

miRNAs and sorafenib

At present, acquisition of sorafenib resistance is a primary limitation of sorafenib-based chemotherapy. MiR-338-3p was proved to sensitize sorafenib in HCC by down-regulating hypoxia-induced factor 1α, which is significant for hypoxia signaling pathway [55]. Additionally, miR-193b increased the sensitivity of HCC cells to sorafenib [56]. MiR-494 increased sorafenib resistance to HCC cells by targeting PTEN. [57]. MiR-34a was reported to increase the effect of sorafenib in HCC cells via direct suppression of Bcl-2 [58]. Besides, Xia et al. [59] found that SMAD7 (one of the TGF-β type 1 receptor antagonists) and PTEN were two functional targets of miR-216a/217. By targeting PTEN AND SMAD7, miR-216a/217 activated the PI3K/Akt and TGF-β pathways, thereby promoting drug resistance and recurrence of liver cancer (Table,2).

Table 2
Summary of other miRNAs involved in single drug resistance in HCC
DrugsmiRNAPathway/ targetDysregulationReferences
Sorafenib miR-338-3p HIF-1 α Down-regulated [55
miR-193b Mcl-1 Down-regulated [56
miR-494 PTEN, PI3K and p-Akt Up-regulated [57
miR-34 Bcl-2 Sorafenib [58
miR-216a/217 PTEN; SMAD7 Sorafenib [59
Cisplatin miR-363 Mcl-1 Down-regulated [60
miR-182 TP53INP1 Up-regulated [64
miR-130a Wnt/β-catenin Up-regulated [65
miR-340 Nrf2-dependent antioxidant pathway Down-regulated [67
miR-33a-5p Down-regulated [68
5-FU miR-141 Nrf2-dependent antioxidant pathway Up-regulated [69
miR-195 BCL-w Down-regulated [70
miR-193a-3p SRSF2 Up-regulated [72
Doxorubicin miR-26 ULK1 Down-regulated [73
Gemicitabine miR-106a PDGF-D/miR-106a/Twist1 pathway Down-regulated [74
Adriamycin miR-215 DHFR and TS Up-regulated [75
miR-31 NDRG3 Down-regulated [76
Etoposide miR-23a TOP1 Up-regulated [77
Radiation miR-20a PTEN/PI3K/Akt signaling pathway Up-regulated [78
Interferon-α miR-146a SMAD4 Up-regulated [79
Arsenic trioxide miR-539 Bcl-2 and Bcl-xL Down-regulated [80
DrugsmiRNAPathway/ targetDysregulationReferences
Sorafenib miR-338-3p HIF-1 α Down-regulated [55
miR-193b Mcl-1 Down-regulated [56
miR-494 PTEN, PI3K and p-Akt Up-regulated [57
miR-34 Bcl-2 Sorafenib [58
miR-216a/217 PTEN; SMAD7 Sorafenib [59
Cisplatin miR-363 Mcl-1 Down-regulated [60
miR-182 TP53INP1 Up-regulated [64
miR-130a Wnt/β-catenin Up-regulated [65
miR-340 Nrf2-dependent antioxidant pathway Down-regulated [67
miR-33a-5p Down-regulated [68
5-FU miR-141 Nrf2-dependent antioxidant pathway Up-regulated [69
miR-195 BCL-w Down-regulated [70
miR-193a-3p SRSF2 Up-regulated [72
Doxorubicin miR-26 ULK1 Down-regulated [73
Gemicitabine miR-106a PDGF-D/miR-106a/Twist1 pathway Down-regulated [74
Adriamycin miR-215 DHFR and TS Up-regulated [75
miR-31 NDRG3 Down-regulated [76
Etoposide miR-23a TOP1 Up-regulated [77
Radiation miR-20a PTEN/PI3K/Akt signaling pathway Up-regulated [78
Interferon-α miR-146a SMAD4 Up-regulated [79
Arsenic trioxide miR-539 Bcl-2 and Bcl-xL Down-regulated [80

miRNAs and cisplatin

Apoptosis is a critical underlying mechanism contributing to cisplatin resistance. Recently, numerous studies have shown that miRNAs work in regulating the cisplatin resistance via targeting apoptosis-associated signaling pathways. For instance, miR-363 reverses cisplatin resistance of HCC cell by directly targeting 3′-UTR of Mcl-1 [60]. Tumor protein p53-induced nuclear protein 1(TP53INP1) promotes the activity of p53, which has confirmed to be related with tumor cell apoptotic progression [61–63]. MiR-182 expression was negatively correlated with TP53INP1 both in vitro and in vivo [64]. In addition, miR-130a increased drug resistance [65]. Sulforaphane, one of the best anticancer plant active substances discovered in vegetables, could prevent apoptosis in BALB/c mice by activating the defensive response that mediated by NF-E2-related factor 2 (Nrf2), revealing a underlying relationship between Nrf2 and cell apoptosis [66]. Besides, miR-340 has the ability of reversing cisplatin resistance by regulating Nrf2-dependent antioxidant pathway, supporting that miR-340 may be a potential candidate for treating cisplatin resistance of HCC [67]. Up-regulation of miR-33a-5p also increased the sensitivity of HCC cells to cisplatin [68].

miRNAs and 5-fluorouracil

MiR-141 reversed the resistance of HCC cells to 5-FU via the Nrf2-dependent antioxidant pathway [69]. Yang et al. [70] reported that overexpression of miR-195 markedly decreased the level of anti-apoptotic protein Bcl-w, and improved the sensitivity of 5-FU in HCC. Furthermore, down-regulation of SRSF2 (a splicing factor) could induce apoptosis [71]. By repressing SRSF2, DNA methylation-regulated change in the expression of miR-193a-3p consequently increased the 5-FU resistance of HCC cells [72].

Other miRNAs involved in drug resistance in HCC

Apart from those miRNAs mentioned above, miR-106a, miR-215, miR-23a, miR-20a, miR-146a, miR-539, miR-31, miR-26, and miR-33a-5p also show underlying ability to regulate resistance during the treatment of HCC. Although miR-26 reverses the effect to doxorubicin sensitivity [73]. In addition, inhibit the expression of miR-106a offered HCC patients a novel treatment strategy [74]. ADM also named adriamycin is a frequent chemotherapy medication utilized to treat multiple types of cancers. Recent study indicated that up-regulation of miRNA-215 resulted in insensitivity to ADM by directly targeting dihydrofolate reductase (DHFR) and thymidylate synthase [75]. However, overexpression of miR-31 exerted opposite effect [76]. MiR-23a could enhance the anti-tumor effect of etoposide in HCC by inhibiting topoisomerase 1 expression [77]. MiR-20a resensitized HCC cells to radiotherapy via PTEN/PI3K/Akt pathway [78]. MiR-146a regulate the effect of IFN-α to HCC cells by mediating SMAD4 [79]. Additionally, miR-539 induced HepG2 cells apoptosis and remarkably overcame arsenic trioxide resistance [80].

LncRNAs

In recent studies, lncRNAs are widely recognized as crucial regulators in suppressing tumor and oncogenesis, and emerge as potentially vital mediators in regulating drug resistance through modulation of apoptosis, drug efflux system, drug metabolism, DNA repair, and EMT [81–83]. A new study finds that ncRNAs including lncRNAs can participate in drug resistance mediation by controlling the function of cancer stem cells [84]. Li et al. [85] demonstrated that lncARSR was involved in doxorubicin resistance during the treatment of HCC. By knockdown of lncARSR, PTEN expression was decreased whereas PI3K/Akt pathway was activated. Thus, sensitized HCC cells reacted with the resistance of doxorubicin. Linc-VLDLR contributed to improve drug resistance of HCC patients by regulating chemotherapeutic agents transport, in other words, by modulating expression of drug transporter genes, like ABC subfamily G member 2 (ABCG2), leading the development of sorafenib-resistance, but decline the viability of cells [86]. As we all know, TGF-β is a key factor related with drug resistance of human cancers. LncRNA ribonucleic acids-ROR (lncRNA-ROR) is a functional player in chemoresistance during the treatment of chemotherapy. Recent study showed that TGFβ selectively enriched lnc-RoR within extracellular vesicles, thereby promoting HCC chemoresistance [87]. Tsang and Kwok [88] have found that knockdown of H19 by transfecting antisense H19 oligonucleotides suppressed the expression of MDR1 gene as well as its protein product P-gp, and increased doxorubicin sensitivity in both R-HepG2 cells and HepG2 parent cells, which was partially due to the regulation of MDR1 promoter methylation by H19. Xiong et al. [89] provided a new insight into the function of HULC/USP22/silent information regulator 1 (Sirt1)/protective autophagy pathway and demonstrated the capacity of lncRNA HULC to decrease chemosensitivity of HCC cells. To be specific, HULC up-regulated ubiquitin-specific peptidase 22 (USP22) through down-regulating three miRNAs and stabilizing Sirt1 protein. Therefore, triggered protective autophagy was harmful for patients with HCC. Taurine up-regulated gene 1 (TUG1) is a lncRNA that was identified to be related with tumor cells apoptosis and was up-regulated in ADM-resistant cells. Yang et al. [90] found that down-regulation of TUG1 attenuated the resistance of HCC cells to chemotherapy via suppressing the expression of MDR1 and P-gp. In addition, after transfected with TUG1 siRNA and treated with ADM, SMMC-7721/ADM, and HepG2/ADM cells showed higher apoptosis rate. Furthermore, HANR, NR2F1-AS1, and HOTAIR were lncRNAs up-regulated in HCC tissue. Down-regulation of HANR enhanced chemosensitivity to doxorubicin in HCC cell lines [91], NR2F1-AS1 regulated HCC oxaliplatin resistance by targeting miR-363-ABCC1 pathway [92], and knockdown of lncRNA HOTAIR sensitized HCC cells to cisplatin through regulating the STAT3/ABCB1 signaling pathway [93]. Besides, Schmitt et al. [94] suggested that lncRNAs can be regulated by p53. Thus, p53 modulated lncRNAs may be one of the mechanisms for drug resistance in HCC (Table 3).

Table 3
Dysregulated lncRNAs involved in drug resistance in HCC
LncRNAExpression in HCCDrugMechanismReferences
LncARSR Up-regulated Doxorubicin Modulating PTEN-PI3K/Akt pathway [85
LincRNA-VLDLR Up-regulated Sorafenib, camptothecin, doxorubicin Reducing expression of ABCG2 [86
LincRNA-ROR Up-regulated Sorafenib Response to TGF-β [87
H19 Up-regulated Doxorubicin Inducing P-gp expression and regulating MDR1 promoter methylation [88
HULC Up-regulated Oxaliplatin, 5-fluorouracil, pirarubicin Triggering autophagy via stabilizing Sirt1 [89
TUG1 Up-regulated Adriamycin Promoting expression of P- gp and MDR1 [90
HANR Up-regulated Doxorubicin Regulating the phosphorylation of GSK3β [91
NR2F1-AS1 Up-regulated Oxaliplatin Targeting miR-363-ABCC1 pathway [92
HOTAIR Up-regulated Cisplatin Activating STAT3/ABCB1 pathway [93
LncRNAExpression in HCCDrugMechanismReferences
LncARSR Up-regulated Doxorubicin Modulating PTEN-PI3K/Akt pathway [85
LincRNA-VLDLR Up-regulated Sorafenib, camptothecin, doxorubicin Reducing expression of ABCG2 [86
LincRNA-ROR Up-regulated Sorafenib Response to TGF-β [87
H19 Up-regulated Doxorubicin Inducing P-gp expression and regulating MDR1 promoter methylation [88
HULC Up-regulated Oxaliplatin, 5-fluorouracil, pirarubicin Triggering autophagy via stabilizing Sirt1 [89
TUG1 Up-regulated Adriamycin Promoting expression of P- gp and MDR1 [90
HANR Up-regulated Doxorubicin Regulating the phosphorylation of GSK3β [91
NR2F1-AS1 Up-regulated Oxaliplatin Targeting miR-363-ABCC1 pathway [92
HOTAIR Up-regulated Cisplatin Activating STAT3/ABCB1 pathway [93

Conclusions

Clearly, drug resistance is the one that causes the most trouble during the therapy of HCC in clinic settings and need urgent solution. NcRNAs including miRNAs, lncRNAs, and circRNAs are suggested to be the potential promising therapeutic targets for overcoming drug resistance in the treatment of HCC. Advanced experimental techniques including RNA-sequencing, CRISPR screens, genome wide association studies and high-throughput studies allow characterizing novel ncRNA roles in HCC drug resistance. Molecular mechanisms of ncRNAs in HCC constitute a complicated regulatory network (Figure 1). Although a large biological signal pathways of ncRNAs involved in drug resistance are still unknown. More mechanisms and functions of chemoresistance-related ncRNAs need to be further mined for advance of HCC therapy, which may offer new approaches to reverse drug resistance. Interestingly, this paper finds that some miRNAs belong to same family but own opposite effects in regulating the development of cancer like Let-7 family. Characterizing the underlying roles of those miRNAs may be propitious to HCC treatment. Recently, exosomes are found to have a large content of miRNAs, which brings a bright research prospect. In addition, the knowledge of the emerging functions of lncRNAs and circRNAs in drug resistance or other aspects in cancer is only the tip of the iceberg. The evidence of ncRNAs in clinical application is still insufficient. More clinical trials need to be further launched in the future. We believe that ncRNAs combine with chemotherapy will be an effective strategy for advanced liver cancer.

NcRNAs involved in drug resistance of HCC

Figure 1
NcRNAs involved in drug resistance of HCC

HCC largely caused by chronic HBV infection, and the effect of chemotherapy was seriously limited by drug resistance. A lot of ncRNAs are involved in drug resistance of HCC. These ncRNAs can mediate the sensitivity of single-antitumor drug or multi-antitumor drug of HCC, and the molecular mechanisms constitute a complicated network machinery.

Figure 1
NcRNAs involved in drug resistance of HCC

HCC largely caused by chronic HBV infection, and the effect of chemotherapy was seriously limited by drug resistance. A lot of ncRNAs are involved in drug resistance of HCC. These ncRNAs can mediate the sensitivity of single-antitumor drug or multi-antitumor drug of HCC, and the molecular mechanisms constitute a complicated network machinery.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Author contribution

B.D. and W. L. revised the main text. L.X. helped in the illustration of work. W.F. has participated in the concept and discussion of the work.

Funding

This research was supported by the National Natural Science Foundation of China [grant number 81372462, 81572987]; and Department of Science and Technology of Zhejiang Province [grant number 2014C03012].

Abbreviations

     
  • 5-FU

    5-fluorouracil

  •  
  • ABC

    ATP-binding cassette

  •  
  • ADM

    adriamycin

  •  
  • circRNA

    circular RNA

  •  
  • DHFR

    dihydrofolate reductase

  •  
  • EMT

    epithelial to mesenchymal transition

  •  
  • HBV

    hepatitis B virus

  •  
  • HCC

    hepatocellular carcinoma

  •  
  • IFN

    interferon

  •  
  • LncRNA

    long non-coding RNA

  •  
  • MDR

    multidrug resistance

  •  
  • MRP

    MDR-associated protein

  •  
  • ncRNA

    non-coding RNA

  •  
  • Nrf2

    NF-E2-related factor 2

  •  
  • P-gp

    P-glycoprotein

  •  
  • Sirt1

    silent information regulator 1

  •  
  • TP53INP1

    tumor protein p53-induced nuclear protein 1

  •  
  • TUG1

    taurine up-regulated gene 1

  •  
  • UTR

    untranslated region

  •  
  • VCR

    vincristine

  •  
  • wt-p53

    wild-type p53

References

References
1
Torre
L.A.
,
Bray
F.
,
Siegel
R.L.
,
Ferlay
J.
,
Lortet-Tieulent
J.
and
Jemal
A.
(
2015
)
Global cancer statistics, 2012
.
CA Cancer J. Clin.
65
,
87
108
[PubMed]
2
Mazzoccoli
G.
,
Miele
L.
,
Oben
J.
,
Grieco
A.
and
Vinciguerra
M.
(
2016
)
Biology, epidemiology, clinical aspects of hepatocellular carcinoma and the role of sorafenib
.
Curr. Drug Targets
17
,
783
799
[PubMed]
3
Finn
R.S.
,
Zhu
A.X.
,
Farah
W.
,
Almasri
J.
,
Zaiem
F.
,
Prokop
L.J.
et al
(
2018
)
Therapies for advanced stage hepatocellular carcinoma with macrovascular invasion or metastatic disease: a systematic review and meta-analysis
.
Hepatology
67
,
422
435
[PubMed]
4
Kanthaje
S.
,
Makol
A.
and
Chakraborti
A.
(
2018
)
Sorafenib response in hepatocellular carcinoma: microRNAs as tuning forks
.
Hepatol. Res.
48
,
5
14
[PubMed]
5
Birney
E.
,
Stamatoyannopoulos
J.A.
,
Dutta
A.
,
Guigo
R.
,
Gingeras
T.R.
,
Margulies
E.H.
et al
(
2007
)
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
.
Nature
447
,
799
816
[PubMed]
6
Xie
N.
and
Liu
G.
(
2015
)
ncRNA-regulated immune response and its role in inflammatory lung diseases
.
Am. J. Physiol. Lung Cell Mol. Physiol.
309
,
L1076
L1087
[PubMed]
7
Maurano
M.T.
,
Humbert
R.
,
Rynes
E.
,
Thurman
R.E.
,
Haugen
E.
,
Wang
H.
et al
(
2012
)
Systematic localization of common disease-associated variation in regulatory DNA
.
Science
337
,
1190
1195
[PubMed]
8
Yahya
S.M.M.
,
Fathy
S.A.
,
El-Khayat
Z.A.
,
El-Toukhy
S.E.
,
Hamed
A.R.
,
Hegazy
M.G.A.
et al
(
2018
)
Possible role of microRNA-122 in modulating multidrug resistance of hepatocellular carcinoma
.
Indian J. Clin. Biochem.
33
,
21
30
[PubMed]
9
Ayers
D.
and
Vandesompele
J.
(
2017
)
Influence of microRNAs and long non-coding RNAs in cancer chemoresistance
.
Genes (Basel)
8
,
pii: E95
[PubMed]
10
Mihanfar
A.
,
Fattahi
A.
and
Nejabati
H.R.
(
2017
)
MicroRNA-mediated drug resistance in ovarian cancer
.
J. Cell. Physiol.
[PubMed]
11
Riquelme
I.
,
Letelier
P.
,
Riffo-Campos
A.L.
,
Brebi
P.
and
Roa
J.C.
(
2016
)
Emerging role of miRNAs in the drug resistance of gastric cancer
.
Int. J. Mol. Sci.
17
,
424
[PubMed]
12
Zhang
Y.
and
Wang
J.
(
2017
)
MicroRNAs are important regulators of drug resistance in colorectal cancer
.
Biol. Chem.
398
,
929
938
[PubMed]
13
Zang
H.
,
Peng
J.
,
Wang
W.
and
Fan
S.
(
2017
)
Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer
.
J. Cancer
8
,
3856
3861
[PubMed]
14
Hong
L.
,
Han
Y.
,
Zhang
H.
,
Zhao
Q.
,
Wu
K.
and
Fan
D.
(
2014
)
Drug resistance-related miRNAs in hepatocellular cancer
.
Expert Rev. Gastroenterol. Hepatol.
8
,
283
288
[PubMed]
15
Mercer
T.R.
,
Dinger
M.E.
and
Mattick
J.S.
(
2009
)
Long non-coding RNAs: insights into functions
.
Nat. Rev. Genet.
10
,
155
159
[PubMed]
16
Li
G.
,
Zhang
H.
,
Wan
X.
,
Yang
X.
,
Zhu
C.
,
Wang
A.
et al
(
2014
)
Long noncoding RNA plays a key role in metastasis and prognosis of hepatocellular carcinoma
.
Biomed. Res. Int.
2014
,
780521
[PubMed]
17
Heery
R.
,
Finn
S.P.
,
Cuffe
S.
and
Gray
S.G.
(
2017
)
Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells
.
Cancers (Basel)
9
,
pii: E38
[PubMed]
18
Li
W.X.
,
Li
Q.
,
Lin
Y.
,
Huang
Y.X.
and
Chen
L.
(
2016
)
[Research advances in diagnostic and therapeutic application of long-chain non-coding RNAs in hepatocellular carcinoma]
.
Zhonghua Gan Zang Bing Za Zhi
24
,
628
631
[PubMed]
19
Parasramka
M.A.
,
Maji
S.
,
Matsuda
A.
,
Yan
I.K.
and
Patel
T.
(
2016
)
Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma
.
Pharmacol. Ther.
161
,
67
78
[PubMed]
20
Huo
X.
,
Han
S.
,
Wu
G.
,
Latchoumanin
O.
,
Zhou
G.
,
Hebbard
L.
et al
(
2017
)
Dysregulated long noncoding RNAs (lncRNAs) in hepatocellular carcinoma: implications for tumorigenesis, disease progression, and liver cancer stem cells
.
Mol. Cancer
16
,
165
[PubMed]
21
Shao
F.
,
Huang
M.
,
Meng
F.
and
Huang
Q.
(
2018
)
Circular RNA signature predicts gemcitabine resistance of pancreatic ductal adenocarcinoma
.
Front Pharmacol.
9
,
584
[PubMed]
22
Li
Y.J.
,
Lei
Y.H.
,
Yao
N.
,
Wang
C.R.
,
Hu
N.
,
Ye
W.C.
et al
(
2017
)
Autophagy and multidrug resistance in cancer
.
Chin. J. Cancer
36
,
52
[PubMed]
23
Buscher
H.P.
(
1990
)
Defective drug uptake contributing to multidrug resistance in hepatoma cells can be evaluated in vitro
.
Klin. Wochenschr.
68
,
443
446
[PubMed]
24
Chen
Z.
,
Shi
T.
,
Zhang
L.
,
Zhu
P.
,
Deng
M.
,
Huang
C.
et al
(
2016
)
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade
.
Cancer Lett.
370
,
153
164
[PubMed]
25
Konieczna
A.
,
Erdosova
B.
,
Lichnovska
R.
,
Jandl
M.
,
Cizkova
K.
and
Ehrmann
J.
(
2011
)
Differential expression of ABC transporters (MDR1, MRP1, BCRP) in developing human embryos
.
J. Mol. Histol.
42
,
567
574
[PubMed]
26
Ling
V.
(
1997
)
Multidrug resistance: molecular mechanisms and clinical relevance
.
Cancer Chemother. Pharmacol.
40
,
Suppl
,
S3
S8
[PubMed]
27
Chin
K.V.
and
Liu
B.
(
1994
)
Regulation of the multidrug resistance (MDR1) gene expression
.
In Vivo
8
,
835
841
[PubMed]
28
Alisi
A.
,
Cho
W.C.
,
Locatelli
F.
and
Fruci
D.
(
2013
)
Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma
.
Int. J. Mol. Sci.
14
,
24706
24725
[PubMed]
29
Bourhis
J.
,
Riou
G.
and
Benard
J.
(
1990
)
Expression of P-glycoprotein 170 (GP 170) and drug resistance in human cancers
.
Bull. Cancer
77
,
957
965
[PubMed]
30
Gai
X.D.
,
Li
G.L.
,
Huang
J.Z.
,
Xue
H.J.
and
Wang
D.
(
2006
)
Reversal of multidrug resistance of human hepatocellular carcinoma cells by wild-type p53 gene and related mechanisms
.
Ai Zheng
25
,
954
959
[PubMed]
31
Deng
J.
,
Wang
Y.
,
Lei
J.
,
Lei
W.
and
Xiong
J.P.
(
2017
)
Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance
.
Tumour Biol.
39
,
32
Nio
K.
,
Yamashita
T.
and
Kaneko
S.
(
2017
)
The evolving concept of liver cancer stem cells
.
Mol. Cancer
16
,
4
[PubMed]
33
Wen
L.
,
Liang
C.
,
Chen
E.
,
Chen
W.
,
Liang
F.
,
Zhi
X.
et al
(
2016
)
Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent
.
Sci. Rep.
6
,
23269
[PubMed]
34
Shu
X.L.
,
Fan
C.B.
,
Long
B.
,
Zhou
X.
and
Wang
Y.
(
2016
)
The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression
.
Eur. Rev. Med. Pharmacol. Sci.
20
,
4459
4465
[PubMed]
35
Xu
Y.
,
Xia
F.
,
Ma
L.
,
Shan
J.
,
Shen
J.
,
Yang
Z.
et al
(
2011
)
MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest
.
Cancer Lett.
310
,
160
169
[PubMed]
36
Wu
Q.
,
Liu
H.O.
,
Liu
Y.D.
,
Liu
W.S.
,
Pan
D.
,
Zhang
W.J.
et al
(
2015
)
Decreased expression of hepatocyte nuclear factor 4alpha (Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity
.
J. Biol. Chem.
290
,
1170
1185
[PubMed]
37
Yang
T.
,
Zheng
Z.M.
,
Li
X.N.
,
Li
Z.F.
,
Wang
Y.
,
Geng
Y.F.
et al
(
2013
)
MiR-223 modulates multidrug resistance via downregulation of ABCB1 in hepatocellular carcinoma cells
.
Exp. Biol. Med. (Maywood)
238
,
1024
1032
[PubMed]
38
Yuan
P.
,
Cao
W.
,
Zang
Q.
,
Li
G.
,
Guo
X.
and
Fan
J.
(
2016
)
The HIF-2 alpha-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy
.
Biochem. Biophys. Res. Commun.
478
,
1067
1073
[PubMed]
39
Chen
Z.
,
Ma
T.
,
Huang
C.
,
Zhang
L.
,
Lv
X.
,
Xu
T.
et al
(
2013
)
MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/beta-catenin pathway in hepatocellular carcinoma cells
.
Cell. Signal.
25
,
2693
2701
[PubMed]
40
Tang
J.
,
Tao
Z.H.
,
Wen
D.
,
Wan
J.L.
,
Liu
D.L.
,
Zhang
S.
et al
(
2014
)
MiR-612 suppresses the stemness of liver cancer via Wnt/beta-catenin signaling
.
Biochem. Biophys. Res. Commun.
447
,
210
215
[PubMed]
41
Li
X.
,
Lu
P.
,
Li
B.
,
Yang
R.
,
Chu
Y.
,
Zhang
Z.
et al
(
2016
)
Sensitization of hepatocellular carcinoma cells to irradiation by miR34a through targeting lactate dehydrogenaseA
.
Mol. Med. Rep.
13
,
3661
3667
[PubMed]
42
Zhao
Y.
,
Qi
X.
,
Chen
J.
,
Wei
W.
,
Yu
C.
,
Yan
H.
et al
(
2017
)
The miR-491-3p/Sp3/ABCB1 axis attenuates multidrug resistance of hepatocellular carcinoma
.
Cancer Lett.
408
,
102
111
[PubMed]
43
Yang
X.
,
Zang
J.
,
Pan
X.
,
Yin
J.
,
Xiang
Q.
,
Yu
J.
et al
(
2017
)
miR-503 inhibits proliferation making human hepatocellular carcinoma cells susceptible to 5-fluorouracil by targeting EIF4E
.
Oncol. Rep.
37
,
563
570
[PubMed]
44
Wu
Y.
,
Guo
L.
,
Liu
J.
,
Liu
R.
,
Liu
M.
and
Chen
J.
(
2014
)
The reversing and molecular mechanisms of miR-503 on the drug-resistance to cisplatin in A549/DDP cells
.
Zhongguo Fei Ai Za Zhi
17
,
1
7
[PubMed]
45
Wang
D.
,
Zhang
N.
,
Ye
Y.
,
Qian
J.
,
Zhu
Y.
and
Wang
C.
(
2014
)
Role and mechanisms of microRNA503 in drug resistance reversal in HepG2/ADM human hepatocellular carcinoma cells
.
Mol. Med. Rep.
10
,
3268
3274
[PubMed]
46
Zhu
M.
,
Li
M.
,
Wang
T.
,
Linghu
E.
and
Wu
B.
(
2016
)
MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells
.
Tumour Biol.
37
,
13995
14008
[PubMed]
47
Shao
P.
,
Qu
W.K.
,
Wang
C.Y.
,
Tian
Y.
,
Ye
M.L.
,
Sun
D.G.
et al
(
2017
)
MicroRNA-205-5p regulates the chemotherapeutic resistance of hepatocellular carcinoma cells by targeting PTEN/JNK/ANXA3 pathway
.
Am. J. Transl. Res.
9
,
4300
4307
[PubMed]
48
Mu
W.
,
Hu
C.
,
Zhang
H.
,
Qu
Z.
,
Cen
J.
,
Qiu
Z.
et al
(
2015
)
miR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression
.
Cell Res.
25
,
477
495
[PubMed]
49
Tang
H.
,
Zhang
P.
,
Xiang
Q.
,
Yin
J.
,
Yu
J.
,
Yang
X.
et al
(
2014
)
Let-7 g microRNA sensitizes fluorouracil-resistant human hepatoma cells
.
Pharmazie
69
,
287
292
[PubMed]
50
Tsang
W.P.
and
Kwok
T.T.
(
2008
)
Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3
.
Apoptosis
13
,
1215
1222
[PubMed]
51
Xu
N.
,
Zhang
J.
,
Shen
C.
,
Luo
Y.
,
Xia
L.
,
Xue
F.
et al
(
2012
)
Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell
.
Biochem. Biophys. Res. Commun.
423
,
826
831
[PubMed]
52
Fornari
F.
,
Milazzo
M.
,
Chieco
P.
,
Negrini
M.
,
Calin
G.A.
,
Grazi
G.L.
et al
(
2010
)
MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells
.
Cancer Res.
70
,
5184
5193
[PubMed]
53
Tomimaru
Y.
,
Eguchi
H.
,
Nagano
H.
,
Wada
H.
,
Tomokuni
A.
,
Kobayashi
S.
et al
(
2010
)
MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells
.
Br. J. Cancer
103
,
1617
1626
[PubMed]
54
Wang
X.J.
,
Zhang
D.L.
,
Fu
C.
,
Wei
B.Z.
and
Li
G.J.
(
2016
)
MiR-183 modulates multi-drug resistance in hepatocellular cancer (HCC) cells via miR-183-IDH2/SOCS6-HIF-1alpha feedback loop
.
Eur. Rev. Med. Pharmacol. Sci.
20
,
2020
2027
[PubMed]
55
Xu
H.
,
Zhao
L.
,
Fang
Q.
,
Sun
J.
,
Zhang
S.
,
Zhan
C.
et al
(
2014
)
MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α
.
PLoS ONE
9
,
e115565
[PubMed]
56
Mao
K.
,
Zhang
J.
,
He
C.
,
Xu
K.
,
Liu
J.
,
Sun
J.
et al
(
2014
)
Restoration of miR-193b sensitizes Hepatitis B virus-associated hepatocellular carcinoma to sorafenib
.
Cancer Lett.
352
,
245
252
[PubMed]
57
Liu
K.
,
Liu
S.
,
Zhang
W.
,
Jia
B.
,
Tan
L.
,
Jin
Z.
et al
(
2015
)
miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN
.
Oncol. Rep.
34
,
1003
1010
[PubMed]
58
Yang
F.
,
Li
Q.J.
,
Gong
Z.B.
,
Zhou
L.
,
You
N.
,
Wang
S.
et al
(
2014
)
MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment
.
Technol. Cancer Res Treat.
13
,
77
86
[PubMed]
59
Xia
H.
,
Ooi
L.L.
and
Hui
K.M.
(
2013
)
MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer
.
Hepatology
58
,
629
641
[PubMed]
60
Ou
Y.
,
Zhai
D.
,
Wu
N.
and
Li
X.
(
2015
)
Downregulation of miR-363 increases drug resistance in cisplatin-treated HepG2 by dysregulating Mcl-1
.
Gene
572
,
116
122
[PubMed]
61
Seillier
M.
,
Peuget
S.
,
Gayet
O.
,
Gauthier
C.
,
N’Guessan
P.
,
Monte
M.
et al
(
2012
)
TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death
.
Cell Death Differ.
19
,
1525
1535
[PubMed]
62
Tomasini
R.
,
Seux
M.
,
Nowak
J.
,
Bontemps
C.
,
Carrier
A.
,
Dagorn
J.C.
et al
(
2005
)
TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity
.
Oncogene
24
,
8093
8104
[PubMed]
63
N’Guessan
P.
,
Pouyet
L.
,
Gosset
G.
,
Hamlaoui
S.
,
Seillier
M.
,
Cano
C.E.
et al
(
2011
)
Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis
.
Antioxid. Redox Signal.
15
,
1639
1653
[PubMed]
64
Qin
J.
,
Luo
M.
,
Qian
H.
and
Chen
W.
(
2014
)
Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1
.
Gene
538
,
342
347
[PubMed]
65
Xu
N.
,
Shen
C.
,
Luo
Y.
,
Xia
L.
,
Xue
F.
,
Xia
Q.
et al
(
2012
)
Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell
.
Biochem. Biophys. Res. Commun.
425
,
468
472
[PubMed]
66
Sun
X.
,
Mi
L.
,
Liu
J.
,
Song
L.
,
Chung
F.L.
and
Gan
N.
(
2011
)
Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice
.
Toxicol. Appl. Pharmacol.
255
,
9
17
[PubMed]
67
Shi
L.
,
Chen
Z.G.
,
Wu
L.L.
,
Zheng
J.J.
,
Yang
J.R.
,
Chen
X.F.
et al
(
2014
)
miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway
.
Asian Pac. J. Cancer Prev.
15
,
10439
10444
[PubMed]
68
Meng
W.
,
Tai
Y.
,
Zhao
H.
,
Fu
B.
,
Zhang
T.
,
Liu
W.
et al
(
2017
)
Downregulation of miR-33a-5p in hepatocellular carcinoma: a possible mechanism for chemotherapy resistance
.
Med. Sci. Monit.
23
,
1295
1304
[PubMed]
69
Shi
L.
,
Wu
L.
,
Chen
Z.
,
Yang
J.
,
Chen
X.
,
Yu
F.
et al
(
2015
)
MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil
.
Cell. Physiol. Biochem.
35
,
2333
2348
[PubMed]
70
Yang
X.
,
Yin
J.
,
Yu
J.
,
Xiang
Q.
,
Liu
Y.
,
Tang
S.
et al
(
2012
)
miRNA-195 sensitizes human hepatocellular carcinoma cells to 5-FU by targeting BCL-w
.
Oncol. Rep.
27
,
250
257
[PubMed]
71
Komeno
Y.
,
Huang
Y.J.
,
Qiu
J.
,
Lin
L.
,
Xu
Y.
,
Zhou
Y.
et al
(
2015
)
SRSF2 is essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing
.
Mol. Cell. Biol.
35
,
3071
3082
[PubMed]
72
Ma
K.
,
He
Y.
,
Zhang
H.
,
Fei
Q.
,
Niu
D.
,
Wang
D.
et al
(
2012
)
DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression
.
J. Biol. Chem.
287
,
5639
5649
[PubMed]
73
Jin
F.
,
Wang
Y.
,
Li
M.
,
Zhu
Y.
,
Liang
H.
,
Wang
C.
et al
(
2017
)
MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy
.
Cell Death Dis.
8
,
e2540
[PubMed]
74
Wang
R.
,
Li
Y.
,
Hou
Y.
,
Yang
Q.
,
Chen
S.
,
Wang
X.
et al
(
2015
)
The PDGF-D/miR-106a/Twist1 pathway orchestrates epithelial-mesenchymal transition in gemcitabine resistance hepatoma cells
.
Oncotarget
6
,
7000
7010
[PubMed]
75
Wang
L.
,
Wang
Y.M.
,
Xu
S.
,
Wang
W.G.
,
Chen
Y.
,
Mao
J.Y.
et al
(
2015
)
MicroRNA-215 is upregulated by treatment with Adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues
.
Mol. Med. Rep.
12
,
5274
5280
[PubMed]
76
Du
Z.
,
Niu
S.
,
Xu
X.
and
Xu
Q.
(
2017
)
MicroRNA31-NDRG3 regulation axes are essential for hepatocellular carcinoma survival and drug resistance
.
Cancer Biomark.
19
,
221
230
[PubMed]
77
Wang
N.
,
Zhu
M.
,
Tsao
S.W.
,
Man
K.
,
Zhang
Z.
and
Feng
Y.
(
2013
)
MiR-23a-mediated inhibition of topoisomerase 1 expression potentiates cell response to etoposide in human hepatocellular carcinoma
.
Mol. Cancer
12
,
119
[PubMed]
78
Zhang
Y.
,
Zheng
L.
,
Ding
Y.
,
Li
Q.
,
Wang
R.
,
Liu
T.
et al
(
2015
)
MiR-20a induces cell radioresistance by Activating the PTEN/PI3K/Akt signaling pathway in hepatocellular carcinoma
.
Int. J. Radiat. Oncol. Biol. Phys.
92
,
1132
1140
[PubMed]
79
Tomokuni
A.
,
Eguchi
H.
,
Tomimaru
Y.
,
Wada
H.
,
Kawamoto
K.
,
Kobayashi
S.
et al
(
2011
)
miR-146a suppresses the sensitivity to interferon-alpha in hepatocellular carcinoma cells
.
Biochem. Biophys. Res. Commun.
414
,
675
680
[PubMed]
80
Zhu
C.
,
Zhou
R.
,
Zhou
Q.
,
Chang
Y.
and
Jiang
M.
(
2016
)
MicroRNA-539 suppresses tumor growth and tumorigenesis and overcomes arsenic trioxide resistance in hepatocellular carcinoma
.
Life Sci.
166
,
34
40
[PubMed]
81
Chen
Q.N.
,
Wei
C.C.
,
Wang
Z.X.
and
Sun
M.
(
2017
)
Long non-coding RNAs in anti-cancer drug resistance
.
Oncotarget
8
,
1925
1936
[PubMed]
82
Deng
H.
,
Zhang
J.
,
Shi
J.
,
Guo
Z.
,
He
C.
,
Ding
L.
et al
(
2016
)
Role of long non-coding RNA in tumor drug resistance
.
Tumour Biol.
37
,
11623
11631
[PubMed]
83
Majidinia
M.
and
Yousefi
B.
(
2016
)
Long non-coding RNAs in cancer drug resistance development
.
DNA Repair (Amst.)
45
,
25
33
[PubMed]
84
Lv
H.
,
Lv
G.
,
Han
Q.
,
Yang
W.
and
Wang
H.
(
2018
)
Noncoding RNAs in liver cancer stem cells: the big impact of little things
.
Cancer Lett.
418
,
51
63
[PubMed]
85
Li
Y.
,
Ye
Y.
,
Feng
B.
and
Qi
Y.
(
2017
)
Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN‐PI3K/Akt pathway
.
J. Cell. Biochem.
118
,
4498
4507
[PubMed]
86
Takahashi
K.
,
Yan
I.K.
,
Wood
J.
,
Haga
H.
and
Patel
T.
(
2014
)
Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy
.
Mol. Cancer Res.
12
,
1377
1387
[PubMed]
87
Takahashi
K.
,
Yan
I.K.
,
Kogure
T.
,
Haga
H.
and
Patel
T.
(
2014
)
Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer
.
FEBS Open Bio.
4
,
458
467
[PubMed]
88
Tsang
W.P.
and
Kwok
T.T.
(
2007
)
Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells
.
Oncogene
26
,
4877
4881
[PubMed]
89
Xiong
H.
,
Ni
Z.
,
He
J.
,
Jiang
S.
,
Li
X.
,
He
J.
et al
(
2017
)
LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells
.
Oncogene
36
,
3528
3540
[PubMed]
90
Yang
L.
,
Du
Y.
,
Yu
P.
,
Fan
J.
,
Wang
X.
and
Wu
Y.
(
2016
)
Long non-coding RNA TUG1 regulates the development of multidrug resistance in hepatocellular carcinoma via P-gp and MDR1
.
Int. J. Clin. Exp. Med.
9
,
21388
21396
91
Xiao
J.
,
Lv
Y.
,
Jin
F.
,
Liu
Y.
,
Ma
Y.
,
Xiong
Y.
et al
(
2017
)
LncRNA HANR promotes tumorigenesis and increase of chemoresistance in hepatocellular carcinoma
.
Cell. Physiol. Biochem.
43
,
1926
1938
[PubMed]
92
Huang
H.
,
Chen
J.
,
Ding
C.M.
,
Jin
X.
,
Jia
Z.M.
and
Peng
J.
(
2018
)
LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363
.
J. Cell. Mol. Med.
22
,
3238
3245
93
Zhou
J.J.
,
Cheng
D.
,
He
X.Y.
,
Meng
Z.
,
Ye
H.L.
and
Chen
R.F.
(
2017
)
Knockdown of long non-coding RNA HOTAIR sensitizes hepatocellular carcinoma cell to cisplatin by suppressing the STAT3/ABCB1 signaling pathway
.
Oncol. Lett.
14
,
7986
7992
[PubMed]
94
Schmitt
A.M.
,
Garcia
J.T.
,
Hung
T.
,
Flynn
R.A.
,
Shen
Y.
,
Qu
K.
et al
(
2016
)
An inducible long noncoding RNA amplifies DNA damage signaling
.
Nat. Genet.
48
,
1370
1376
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).