Abstract

Polymorphisms in one-carbon metabolism genes may influence the susceptibility to hepatocellular carcinoma (HCC). In the present study, we studied methylenetetrahydrofolate reductase (MTHFR) tagging polymorphisms in 584 HCC cases and 923 controls. Polymerase chain reaction was harnessed to detect MTHFR genotype. Overall, our results showed that genotype distribution of MTHFR rs4846048 and rs4845882 polymorphisms was not different between HCC patients and controls. MTHFR rs9651118 and rs1801133 loci were protective factors for HCC (rs9651118: CT vs. TT: adjusted odds ratio (OR) = 0.67, 95% confidence interval (CI): 0.49–0.90, P=0.008 and TC/CC vs. TT: adjusted OR = 0.70, 95% CI: 0.53–0.93, P=0.015; rs1801133: GA vs. GG: adjusted OR = 0.72, 95% CI: 0.54–0.97, P=0.031, AA/GA vs. GG: adjusted OR = 0.76, 95% CI: 0.57–0.99, P=0.045). However, MTHFR rs3753584 locus was a candidate for susceptibility to HCC (CT vs. TT: adjusted OR = 1.67, 95% CI: 1.20–2.32, P=0.003 and TC/CC vs. TT: adjusted OR = 1.59, 95% CI: 1.15–2.20, P=0.005). Results of haplotype analysis suggested that MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 was associated with the risk of HCC (OR = 1.55, 95% CI: 1.16–2.07, P=0.003). The power of our study also confirmed these associations (the value of power >0.80). In summary, our findings suggested that MTHFR rs3753584, rs9651118 and rs1801133 polymorphisms may affect the risk of HCC in Chinese Han population. In future, our findings should be further validated in additional case–control studies.

Introduction

In 2015, liver cancer (LC) ranked the third most frequent type of malignancy in males and the sixth most frequent type in females, approximately 343700 and 122300 cases occuring in China, respectively [1]. The total LC-related deaths are the third most frequent type of malignancy [1,2]; however, the etiology of LC remains unclear. Susceptibility factors [e.g. hepatitis B virus (HBV), age, obesity, type 2 diabetes, consumption of food contaminated with aflatoxin, nonalcoholic fatty liver disease, heavy drinking related cirrhosis, and tobacco use] may be implicated in the etiology of LC [3–,7]. Accumulating evidences suggested that besides these mentioned people’s lifestyle and environmental factors, some genetic predispositions might also contribute to development of LC.

Folic acid is important for DNA synthesis and methylation, mitosis and controlling related gene expression. Recently, epidemiological investigations showed that sufficient fruits and vegetables intake may be a protective factor for carcinogenesis [8–10]. It is thought that these potential protective roles of diet attribute to the high level intake of folic acid. Methylenetetrahydrofolate reductase (MTHFR) plays an important role in catalyzing the transition of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF), which is a main plasm form of folate. And 5-MTHF is implicated in a conversion procedure of homocysteine (Hcy) into methionine (Met) and the methylation of DNA. Considering the vital role of MTHFR, variants in MTHFR gene may influence the development of cancer.

In humans, MTHFR protein is coded by the MTHFR gene which is located on chromosome 1p36.3. MTHFR single nucleotide polymorphisms (SNPs) may be a potential biomarker of cancer. In addition, Jiao et al. [11] reported that hepatocellular carcinoma (HCC) patients with HBV-infection carried MTHFR rs1801133 AA genotype and A allele may have a better prognosis than those who carried MTHFR rs1801133 GG genotype and G allele. Recently, some studies investigated a potential association of MTHFR loci with HCC susceptibility [11–,15]; however, due to the limited sample sizes, the observations might be conflicting. Therefore, in the present study, we included 1507 subjects to perform a case–control study to extensively explore the relationship between MTHFR tagging SNPs and the risk of HCC.

Materials and methods

Study population

Our study recruited 584 consecutive HCC cases from two Clinical Medical College of Fujian Medical University (Fuzhou City, China) during 2002–2016. Two doctors confirmed HCC diagnosis by pathology. The criterion of Barcelona Clinic Liver Cancer (BCLC) was used to determine the stage of HCC [16,17]. In addition, 923 Chinese people without any cancer history were included as controls. We matched HCC patients and controls by region (Eastern China), age and sex. Every subject was notified purpose of the study. All participants provided written informed consent. A questionnaire regarding age, sex, smoking and alcohol status was used to collect the corresponding information. The protocol of this investigation was approved by Ethics Committee of Fujian Medical University. In the present study, the principles of Declaration of Helsinki was conformed. Chronic HBV infection were determined by using hepatitis B surface antigen enzyme-linked immunosorbent assay Kit (InTec, Xiamen, China).

SNPs selection and genotyping

MTHFR tagging SNPs were selected through Haploview software, which are described in our previous case–control studies [18,19].

EDTA-anticoagulated blood was donated and collected. According to the standard experimental protocol, genomic DNA was obtained by using a DNA Kit (Promega, Madison, U.S.A.). A SNPscan Kit (Genesky Biotechnologies Inc., Shanghai, China) was used to determine the variants of MTHFR SNPs as described in our case–control studies [20]. At this stage, 60 DNA samples were selected and re-analyzed for quality control. Finally, the genotype frequencies were not changed.

Statistical analysis

In the present study, χ2 test or Fisher’s exact test was harnessed to analyze the differences in sex, chronic HBV infection, age, smoking, drinking and the genotype frequencies of HCC patients compared with controls. In addition, age was expressed as means ± standard deviation (SD). The difference in age between two groups was determined by Student’s t test. With an internet Hardy–Weinberg equilibrium (HWE) test (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl), genotype frequencies among controls was used to assess the HWE status [21,22,23,24]. The correlation between MTHFR SNPs and HCC risk was evaluated by odds ratios (ORs) and 95% confidence intervals (CIs). Logistic regression analysis was used to determine the associations between MTHFR polymorphisms and the risk of HCC by adjusting sex, chronic HBV infection, age, smoking and drinking. A two-tailed P<0.05 was considered as significant. We used SHESIS online program (http://analysis.bio-x.cn/myAnalysis.php) to construct MTHFR haplotypes [25]. SAS 9.4 version statistical software (SAS Institute, Cary, NC) was used to analyze data. The power of the present study was determined by a power calculating software (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize) (α = 0.05) [26].

Results

Characteristics

As described in Table 1, 1507 participants (584 patients and 923 controls) were included in the present study. Male:female ratio of the HCC patients was ∼9:1 (89.90% and 10.10%), controls were recruited in the similar proportion (90.47% males and 9.53% females) to match the distribution of sex and average age (HCC cases = 53.17, SD ± 11.76 years; controls = 53.72, SD ± 9.97 years; P=0.327). There were 210 (35.96%) smokers among HCC group and 327 (35.43%) among non-cancer controls, while non-smokers were 374 (64.04%) in HCC cases and 596 (64.57%) in the controls. Drinking and chronic HBV infection ratio in HCC patients was higher than that of controls (29.11 vs. 16.03% and 70.55 vs. 9.21%, respectively). The BCLC stage of HCC was summarized in Table 1. The data of SNPs in MTHFR gene were listed in Table 2.

Table 1
Distribution of selected demographic variables and risk factors in HCC cases and controls
Variable Cases (n=584) Controls (n=923) P1 
 n (%) n (%)  
Age (years) 53.17 (±11.76) 53.72 (±9.97) 0.327 
Age (years)   0.358 
<53 264 (45.21) 395 (42.80)  
≥53 320 (54.79) 528 (57.20)  
Sex   0.717 
Male 525 (89.90) 835 (90.47)  
Female 59 (10.10) 88 (9.53)  
Smoking status   0.834 
Never 374 (64.04) 596 (64.57)  
Ever 210 (35.96) 327 (35.43)  
Alcohol use   <0.001 
Never 414 (70.89) 775 (83.97)  
Ever 170 (29.11) 148 (16.03)  
Chronic HBV infection   <0.001 
Yes 412 (70.55) 85 (9.21)  
No 172 (29.45) 838 (90.79)  
BCLC classification    
392 (67.12)   
175 (29.97)   
17 (2.91)   
Variable Cases (n=584) Controls (n=923) P1 
 n (%) n (%)  
Age (years) 53.17 (±11.76) 53.72 (±9.97) 0.327 
Age (years)   0.358 
<53 264 (45.21) 395 (42.80)  
≥53 320 (54.79) 528 (57.20)  
Sex   0.717 
Male 525 (89.90) 835 (90.47)  
Female 59 (10.10) 88 (9.53)  
Smoking status   0.834 
Never 374 (64.04) 596 (64.57)  
Ever 210 (35.96) 327 (35.43)  
Alcohol use   <0.001 
Never 414 (70.89) 775 (83.97)  
Ever 170 (29.11) 148 (16.03)  
Chronic HBV infection   <0.001 
Yes 412 (70.55) 85 (9.21)  
No 172 (29.45) 838 (90.79)  
BCLC classification    
392 (67.12)   
175 (29.97)   
17 (2.91)   

Bold values are statistically significant (P<0.05).

1

Two-sided χ2 test and Student’s t test.

Table 2
Primary information for MTHFR polymorphisms
Genotyped SNPs rs3753584 T>C rs4846048 A>G rs4845882 G>A rs1801133 G>A rs9651118 T>C 
Chromosome 
Location (NCBI Build 37) 11864586 11846252 11843167 11856378 11862214 
Function NearGene-5 Intron Intron Missense Intron 
Regulome DB scores (http://www.regulomedb.org/3a 1f 
Transcription factor binding site (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm
MiRNA (miRanda) 
MAF1 for Chinese in database 0.093 0.105 0.198 0.439 0.382 
MAF in our controls (n=923) 0.111 0.095 0.216 0.354 0.378 
P-value for HWE2 test in our controls 0.814 0.029 0.437 0.074 0.021 
Genotyping method SNPscan SNPscan SNPscan SNPscan SNPscan 
% Genotyping value 99.27% 99.27% 99.27% 99.27% 99.27% 
Genotyped SNPs rs3753584 T>C rs4846048 A>G rs4845882 G>A rs1801133 G>A rs9651118 T>C 
Chromosome 
Location (NCBI Build 37) 11864586 11846252 11843167 11856378 11862214 
Function NearGene-5 Intron Intron Missense Intron 
Regulome DB scores (http://www.regulomedb.org/3a 1f 
Transcription factor binding site (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm
MiRNA (miRanda) 
MAF1 for Chinese in database 0.093 0.105 0.198 0.439 0.382 
MAF in our controls (n=923) 0.111 0.095 0.216 0.354 0.378 
P-value for HWE2 test in our controls 0.814 0.029 0.437 0.074 0.021 
Genotyping method SNPscan SNPscan SNPscan SNPscan SNPscan 
% Genotyping value 99.27% 99.27% 99.27% 99.27% 99.27% 
1

MAF, minor allele frequency.

2

HWE.

Relationship of MTHFR polymorphisms with HCC patients

Table 3 summarizes the MTHFR genotype frequencies in HCC patients and control groups. Overall, we found that MTHFR rs4846048 and rs4845882 genotype distribution were not statistically significant between two groups.

Table 3
Logistic regression analyses of associations between MTHFR rs3753584 T>C, rs4845882 G>A, rs1801133 G>A, rs4846048 A>G and rs9651118 T>C polymorphisms and the risk of HCC
Genotype Cases (n=584) Controls (n=923) Crude OR (95% CI) P Adjusted OR1 (95% CI) P 
 n n     
MTHFR rs1801133 G>A         
GG 299 52.00 372 40.39 1.00  1.00  
GA 227 39.48 446 48.43 0.63 (0.51–0.79) <0.001 0.72 (0.54–0.97) 0.031 
AA 49 8.52 103 11.18 0.59 (0.41–0.86) 0.006 0.89 (0.56–1.42) 0.625 
GA + AA 276 48.00 549 59.48 0.63 (0.51–0.77) <0.001 0.76 (0.57–0.99) 0.045 
GG+ GA 526 91.48 818 88.82 1.00  1.00  
AA 49 8.52 103 11.18 0.74 (0.52–1.06) 0.098 1.05 (0.67–1.64) 0.842 
A allele 325 28.26 652 35.40     
MTHFR rs3753584 T>C         
TT 431 74.96 729 79.15 1.00  1.00  
CT 139 24.17 180 19.54 1.31 (1.02–1.68) 0.037 1.67 (1.20–2.32) 0.003 
CC 0.87 12 1.30 0.71 (0.25–2.01) 0.514 0.64 (0.16–2.57) 0.530 
CT+CC 144 25.04 192 20.85 1.27 (0.99–1.62) 0.059 1.59 (1.15–2.20) 0.005 
TT+CT 570 99.13 909 98.70 1.00  1.00  
CC 0.87 12 1.30 0.67 (0.23–1.90) 0.445 0.58 (0.15–2.29) 0.434 
C allele 149 12.96 204 11.07     
MTHFR rs4845882 G>A         
GG 329 57.22 562 61.02 1.00  1.00  
GA 222 38.61 320 34.74 1.19 (0.95–1.48) 0.128 1.26 (0.94–1.67) 0.121 
AA 24 4.17 39 4.23 1.05 (0.62–1.78) 0.853 1.18 (0.59–2.36) 0.650 
GA+AA 246 42.78 359 38.98 1.17 (0.95–1.45) 0.145 1.25 (0.94–1.65) 0.120 
GG+GA 551 95.83 882 95.77 1.00  1.00  
AA 24 4.17 39 4.23 0.99 (0.59–1.66) 0.955 1.08 (0.54–2.15) 0.831 
A allele 270 23.48 398 21.61     
MTHFR rs4846048 A>G         
AA 465 80.87 760 82.52 1.00  1.00  
AG 107 18.61 147 15.96 1.19 (0.90–1.57) 0.215 1.17 (0.82–1.68) 0.395 
GG 0.52 14 1.52 0.35 (0.10–1.23) 0.101 0.26 (0.06–1.23) 0.090 
AG+GG 110 19.13 161 17.48 1.12 (0.85–1.46) 0.421 1.08 (0.76–1.54) 0.668 
AA+AG 572 99.48 907 98.49 1.00  1.00  
GG 0.52 14 1.52 0.34 (0.10–1.19) 0.091 0.25 (0.05–1.20) 0.083 
G allele 113 9.82 175 9.50     
MTHFR rs9651118 T>C         
TT 216 37.57 340 36.92 1.00  1.00  
TC 267 46.43 466 50.60 0.90 (0.72–1.13) 0.373 0.67 (0.49–0.90) 0.008 
CC 92 16.00 115 12.49 1.26 (0.91–1.74) 0.162 0.85 (0.55–1.31) 0.458 
TC+CC 359 62.43 581 63.08 0.97 (0.78–1.21) 0.800 0.70 (0.53–0.93) 0.015 
TT+TC 483 84.00 806 87.51 1.00  1.00  
CC 92 16.00 115 12.49 1.34 (0.99–1.80) 0.056 1.07 (0.72–1.59) 0.758 
C allele 451 39.22 696 37.79     
Genotype Cases (n=584) Controls (n=923) Crude OR (95% CI) P Adjusted OR1 (95% CI) P 
 n n     
MTHFR rs1801133 G>A         
GG 299 52.00 372 40.39 1.00  1.00  
GA 227 39.48 446 48.43 0.63 (0.51–0.79) <0.001 0.72 (0.54–0.97) 0.031 
AA 49 8.52 103 11.18 0.59 (0.41–0.86) 0.006 0.89 (0.56–1.42) 0.625 
GA + AA 276 48.00 549 59.48 0.63 (0.51–0.77) <0.001 0.76 (0.57–0.99) 0.045 
GG+ GA 526 91.48 818 88.82 1.00  1.00  
AA 49 8.52 103 11.18 0.74 (0.52–1.06) 0.098 1.05 (0.67–1.64) 0.842 
A allele 325 28.26 652 35.40     
MTHFR rs3753584 T>C         
TT 431 74.96 729 79.15 1.00  1.00  
CT 139 24.17 180 19.54 1.31 (1.02–1.68) 0.037 1.67 (1.20–2.32) 0.003 
CC 0.87 12 1.30 0.71 (0.25–2.01) 0.514 0.64 (0.16–2.57) 0.530 
CT+CC 144 25.04 192 20.85 1.27 (0.99–1.62) 0.059 1.59 (1.15–2.20) 0.005 
TT+CT 570 99.13 909 98.70 1.00  1.00  
CC 0.87 12 1.30 0.67 (0.23–1.90) 0.445 0.58 (0.15–2.29) 0.434 
C allele 149 12.96 204 11.07     
MTHFR rs4845882 G>A         
GG 329 57.22 562 61.02 1.00  1.00  
GA 222 38.61 320 34.74 1.19 (0.95–1.48) 0.128 1.26 (0.94–1.67) 0.121 
AA 24 4.17 39 4.23 1.05 (0.62–1.78) 0.853 1.18 (0.59–2.36) 0.650 
GA+AA 246 42.78 359 38.98 1.17 (0.95–1.45) 0.145 1.25 (0.94–1.65) 0.120 
GG+GA 551 95.83 882 95.77 1.00  1.00  
AA 24 4.17 39 4.23 0.99 (0.59–1.66) 0.955 1.08 (0.54–2.15) 0.831 
A allele 270 23.48 398 21.61     
MTHFR rs4846048 A>G         
AA 465 80.87 760 82.52 1.00  1.00  
AG 107 18.61 147 15.96 1.19 (0.90–1.57) 0.215 1.17 (0.82–1.68) 0.395 
GG 0.52 14 1.52 0.35 (0.10–1.23) 0.101 0.26 (0.06–1.23) 0.090 
AG+GG 110 19.13 161 17.48 1.12 (0.85–1.46) 0.421 1.08 (0.76–1.54) 0.668 
AA+AG 572 99.48 907 98.49 1.00  1.00  
GG 0.52 14 1.52 0.34 (0.10–1.19) 0.091 0.25 (0.05–1.20) 0.083 
G allele 113 9.82 175 9.50     
MTHFR rs9651118 T>C         
TT 216 37.57 340 36.92 1.00  1.00  
TC 267 46.43 466 50.60 0.90 (0.72–1.13) 0.373 0.67 (0.49–0.90) 0.008 
CC 92 16.00 115 12.49 1.26 (0.91–1.74) 0.162 0.85 (0.55–1.31) 0.458 
TC+CC 359 62.43 581 63.08 0.97 (0.78–1.21) 0.800 0.70 (0.53–0.93) 0.015 
TT+TC 483 84.00 806 87.51 1.00  1.00  
CC 92 16.00 115 12.49 1.34 (0.99–1.80) 0.056 1.07 (0.72–1.59) 0.758 
C allele 451 39.22 696 37.79     
1

Adjusted for age, sex, smoking, status of chronic HBV infection and drinking.

Bold values are statistically significant (P<0.05).

Compared with rs1801133 GG genotype frequency, we found that MTHFR rs1801133 GA genotype significantly decreased the risk of HCC (P<0.001). When rs1801133 GG frequency was used as reference, there was a difference in MTHFR rs1801133 AA and AA/GA genotype frequency between two groups (P=0.006 and P<0.001, respectively). Adjustment for sex, chronic HBV infection, age, smoking and drinking, the significant decreased risk also re-appeared in two genetic models (GA vs. GG: adjusted P=0.031, AA/GA vs. GG: adjusted P=0.045, respectively).

We also found MTHFR rs3753584 had an increased susceptibility to HCC (CT vs. TT: P=0.037). Adjustments for sex, chronic HBV infection, age, smoking and drinking, the findings were more significant (CT vs. TT: adjusted P=0.003 and TC/CC vs. TT: adjusted P=0.005).

In crude comparison, we did not find any relationship between MTHFR rs9651118 and HCC susceptibility. However, when adjusted for sex, chronic HBV infection, age, smoking and drinking, a statistically decreased risk of HCC was identified in two genetic model (CT vs. TT: adjusted P=0.008 and TC/CC vs. TT: adjusted P=0.015).

Association of MTHFR polymorphisms with HCC in a stratification analysis

Table 4 showed the MTHFR genotype frequencies in the subgroup analyses by the status of chronic HBV infection. We found that MTHFR rs1801133 and rs9651118 polymorphisms were associated with the decreased risk of HCC in no chronic HBV infection subgroup (rs1801133: GA vs. GG: adjusted P=0.001 and GA/AA vs. GG: adjusted P=0.001; and rs9651118: CT vs. TT: adjusted P=0.021 and TC/CC vs. TT: adjusted P=0.037). However, we identified that MTHFR rs1801133 polymorphism was associated with HCC risk in chronic HBV infection subgroup (rs1801133: AA vs. GG: adjusted P=0.035 and GA/AA vs. GG: adjusted P=0.035). Additionally, the association of MTHFR rs3753584 and rs4845882 polymorphism with the risk of HCC was also found (rs3753584: CT vs. TT: adjusted P=0.003 and TC/CC vs. TT: adjusted P=0.005; rs4845882: GA vs. GG: adjusted P=0.022 and GA/AA vs. GG: adjusted P=0.021).

Table 4
Stratified analyses between MTHFR polymorphisms and HCC risk by status of chronic HBV infection
Genotype Chronic HBV infection (Yes) Adjusted OR1 P1 Chronic HBV infection (No) Adjusted OR1 P1 
 Case Control   Case Control   
 n n   n n   
MTHFR rs1801133 G>A             
GG 210 51.98 51 60.00 1.00  89 52.05 321 38.40 1.00  
GA 163 40.35 32 37.65 1.53 (0.91–2.79) 0.111 64 37.43 414 49.52 0.53 (0.37–0.76) 0.001 
AA 31 7.67 2.35 5.06 (1.12–22.88) 0.035 18 10.53 101 12.08 0.63 (0.36–1.10) 0.104 
GA + AA 194 48.02 34 40.00  1.73 (1.04–2.87) 0.035 82 47.95 515 61.60 0.55 (0.39–0.77) 0.001 
GG+ GA 373 92.33 83 97.65 1.00  153 89.47 735 87.92 1.00  
AA 31 7.67 2.35 4.20 (0.95–18.67) 0.059 18 10.53 101 12.08 0.86 (0.50–1.47) 0.581 
A allele 225 27.85 36 21.18   100 29.24 616 36.84   
MTHFR rs3753584 T>C             
TT 312 77.23 69 81.18 1.00  119 69.59 660 78.95 1.00  
CT 88 21.78 15 17.65 1.19 (0.62–2.26) 0.600 51 29.82 165 19.74 1.78 (1.22–2.60) 0.003 
CC 0.99 1.18 0.69 (0.07–6.69) 0.748 0.58 11 1.32 0.50 (0.06–3.95) 0.512 
CT+CC 92 22.77 16 18.82 1.15 (0.62–2.16) 0.655 52 30.41 176 21.05 1.70 (1.17–2.46) 0.005 
TT+CT 400 99.01 84 98.82 1.00  170 99.42 825 98.68 1.00  
CC 0.99 1.18 0.67 (0.07–6.43) 0.725 0.58 11 1.32 0.44 (0.06–3.42) 0.428 
C allele 96 11.88 17 10.00   53 15.50 187 11.18   
MTHFR rs4845882 G>A             
GG 240 59.41 48 56.47 1.00  89 52.05 514 61.48 1.00  
GA 148 36.63 33 38.82 0.82 (0.49–1.37) 0.448 74 43.27 287 34.33 1.50 (1.06–2.11) 0.022 
AA 16 3.96 4.71 0.71 (0.21–2.43) 0.586 4.68 35 4.19 1.40 (0.62–3.15) 0.415 
GA+AA 164 40.59 37 43.53 0.81 (0.49–1.33) 0.402 82 47.95 322 38.52 1.49 (1.06–2.08) 0.021 
GG+GA 388 96.04 81 95.29 1.00  163 95.32 801 95.81 1.00  
AA 16 3.96 4.71 0.77 (0.23–2.58) 0.670 4.68 35 4.19 1.19 (0.54–2.64) 0.668 
A allele 180 22.28 41 24.12   90 26.32 357 21.35   
MTHFR rs4846048 A>G             
AA 330 81.68 66 77.65 1.00  135 78.95 694 83.01 1.00  
AG 71 17.57 18 21.18 0.76 (0.41–1.42) 0.391 36 21.05 129 15.43 1.45 (0.95–2.20) 0.082 
GG 0.74 1.18 0.65 (0.05–7.75) 0.729 0.00 13 1.55 
AG+GG 74 18.32 19 22.35 0.76 (0.41–1.39) 0.368 36 21.05 142 16.99 1.31 (0.87–1.99) 0.197 
AA+AG 401 99.26 84 98.82 1.00  171 100.00 823 98.45 1.00  
GG 0.74 1.18 0.68 (0.06–8.14) 0.761 0.00 13 1.55 
G allele 77 9.53 20 11.76   36 10.53 155 9.27   
MTHFR rs9651118 T>C             
TT 135 33.42 22 25.88 1.00  81 47.37 318 38.04 1.00  
TC 199 49.26 48 56.47 0.59 (0.33–1.06) 0.078 68 39.77 418 50.00 0.66 (0.46–0.94) 0.021 
CC 70 17.33 15 17.65 0.72 (0.34–1.54) 0.394 22 12.87 100 11.96 0.88 (0.52–1.50) 0.638 
TC+CC 269 66.58 63 74.12 0.62 (0.36–1.09) 0.095 90 52.63 518 61.96 0.70 (0.50–0.98) 0.037 
TT+TC 334 82.67 70 82.35 1.00  149 87.13 736 88.04 1.00  
CC 70 17.33 15 17.65 1.00 (0.52–1.92) 0.995 22 12.87 100 11.96 1.09 (0.66–1.80) 0.727 
C allele 339 41.96 78 45.88   112 32.75 618 36.96   
Genotype Chronic HBV infection (Yes) Adjusted OR1 P1 Chronic HBV infection (No) Adjusted OR1 P1 
 Case Control   Case Control   
 n n   n n   
MTHFR rs1801133 G>A             
GG 210 51.98 51 60.00 1.00  89 52.05 321 38.40 1.00  
GA 163 40.35 32 37.65 1.53 (0.91–2.79) 0.111 64 37.43 414 49.52 0.53 (0.37–0.76) 0.001 
AA 31 7.67 2.35 5.06 (1.12–22.88) 0.035 18 10.53 101 12.08 0.63 (0.36–1.10) 0.104 
GA + AA 194 48.02 34 40.00  1.73 (1.04–2.87) 0.035 82 47.95 515 61.60 0.55 (0.39–0.77) 0.001 
GG+ GA 373 92.33 83 97.65 1.00  153 89.47 735 87.92 1.00  
AA 31 7.67 2.35 4.20 (0.95–18.67) 0.059 18 10.53 101 12.08 0.86 (0.50–1.47) 0.581 
A allele 225 27.85 36 21.18   100 29.24 616 36.84   
MTHFR rs3753584 T>C             
TT 312 77.23 69 81.18 1.00  119 69.59 660 78.95 1.00  
CT 88 21.78 15 17.65 1.19 (0.62–2.26) 0.600 51 29.82 165 19.74 1.78 (1.22–2.60) 0.003 
CC 0.99 1.18 0.69 (0.07–6.69) 0.748 0.58 11 1.32 0.50 (0.06–3.95) 0.512 
CT+CC 92 22.77 16 18.82 1.15 (0.62–2.16) 0.655 52 30.41 176 21.05 1.70 (1.17–2.46) 0.005 
TT+CT 400 99.01 84 98.82 1.00  170 99.42 825 98.68 1.00  
CC 0.99 1.18 0.67 (0.07–6.43) 0.725 0.58 11 1.32 0.44 (0.06–3.42) 0.428 
C allele 96 11.88 17 10.00   53 15.50 187 11.18   
MTHFR rs4845882 G>A             
GG 240 59.41 48 56.47 1.00  89 52.05 514 61.48 1.00  
GA 148 36.63 33 38.82 0.82 (0.49–1.37) 0.448 74 43.27 287 34.33 1.50 (1.06–2.11) 0.022 
AA 16 3.96 4.71 0.71 (0.21–2.43) 0.586 4.68 35 4.19 1.40 (0.62–3.15) 0.415 
GA+AA 164 40.59 37 43.53 0.81 (0.49–1.33) 0.402 82 47.95 322 38.52 1.49 (1.06–2.08) 0.021 
GG+GA 388 96.04 81 95.29 1.00  163 95.32 801 95.81 1.00  
AA 16 3.96 4.71 0.77 (0.23–2.58) 0.670 4.68 35 4.19 1.19 (0.54–2.64) 0.668 
A allele 180 22.28 41 24.12   90 26.32 357 21.35   
MTHFR rs4846048 A>G             
AA 330 81.68 66 77.65 1.00  135 78.95 694 83.01 1.00  
AG 71 17.57 18 21.18 0.76 (0.41–1.42) 0.391 36 21.05 129 15.43 1.45 (0.95–2.20) 0.082 
GG 0.74 1.18 0.65 (0.05–7.75) 0.729 0.00 13 1.55 
AG+GG 74 18.32 19 22.35 0.76 (0.41–1.39) 0.368 36 21.05 142 16.99 1.31 (0.87–1.99) 0.197 
AA+AG 401 99.26 84 98.82 1.00  171 100.00 823 98.45 1.00  
GG 0.74 1.18 0.68 (0.06–8.14) 0.761 0.00 13 1.55 
G allele 77 9.53 20 11.76   36 10.53 155 9.27   
MTHFR rs9651118 T>C             
TT 135 33.42 22 25.88 1.00  81 47.37 318 38.04 1.00  
TC 199 49.26 48 56.47 0.59 (0.33–1.06) 0.078 68 39.77 418 50.00 0.66 (0.46–0.94) 0.021 
CC 70 17.33 15 17.65 0.72 (0.34–1.54) 0.394 22 12.87 100 11.96 0.88 (0.52–1.50) 0.638 
TC+CC 269 66.58 63 74.12 0.62 (0.36–1.09) 0.095 90 52.63 518 61.96 0.70 (0.50–0.98) 0.037 
TT+TC 334 82.67 70 82.35 1.00  149 87.13 736 88.04 1.00  
CC 70 17.33 15 17.65 1.00 (0.52–1.92) 0.995 22 12.87 100 11.96 1.09 (0.66–1.80) 0.727 
C allele 339 41.96 78 45.88   112 32.75 618 36.96   
1

Adjusted for age, sex, smoking, status of chronic HBV infection and drinking.

Bold values are statistically significant (P<0.05).

MTHFR haplotypes

We constructed six haplotypes of MTHFR gene (Table 5). Haplotype analysis of this gene suggested that MTHFR Ars1801133Trs3753584Grs4845882Ars4846048Trs9651118 haplotype was a protective factor for HCC (P=0.008). However, MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 was associated the risk of HCC (P=0.003).

Table 5
MTHFR haplotype frequencies (%) and risk of HCC
Haplotypes HCC Cases (n=1151) Controls (n=1841) Crude OR (95% CI) P 
 n n   
Grs1801133Trs3753584Grs4845882Ars4846048Crs9651118 438 38.05 685 37.21 1.00  
Ars1801133Trs3753584Grs4845882Ars4846048Trs9651118 317 27.54 633 34.38 0.78 (0.65–0.94) 0.008 
Grs1801133Crs3753584Ars4845882Ars4846048Trs9651118 140 12.63 194 10.54 1.13 (0.881.45) 0.339 
Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 111 9.64 112 6.08 1.55 (1.16–2.07) 0.003 
Grs1801133Trs3753584Ars4845882Grs4846048Trs9651118 109 9.47 170 9.23 1.00 (0.771.31) 0.984 
Grs1801133Trs3753584Ars4845882Ars4846048Trs9651118 13 1.13 22 1.20 0.92 (0.461.85) 0.824 
Others 23 2.00 25 1.36 1.44 (0.812.57) 0.216 
Haplotypes HCC Cases (n=1151) Controls (n=1841) Crude OR (95% CI) P 
 n n   
Grs1801133Trs3753584Grs4845882Ars4846048Crs9651118 438 38.05 685 37.21 1.00  
Ars1801133Trs3753584Grs4845882Ars4846048Trs9651118 317 27.54 633 34.38 0.78 (0.65–0.94) 0.008 
Grs1801133Crs3753584Ars4845882Ars4846048Trs9651118 140 12.63 194 10.54 1.13 (0.881.45) 0.339 
Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 111 9.64 112 6.08 1.55 (1.16–2.07) 0.003 
Grs1801133Trs3753584Ars4845882Grs4846048Trs9651118 109 9.47 170 9.23 1.00 (0.771.31) 0.984 
Grs1801133Trs3753584Ars4845882Ars4846048Trs9651118 13 1.13 22 1.20 0.92 (0.461.85) 0.824 
Others 23 2.00 25 1.36 1.44 (0.812.57) 0.216 

Bold values are statistically significant (P<0.05).

The power of the present study (α = 0.05)

The present study’s power was determined (α = 0.05). For MTHFR rs1801133 polymorphism, the power value was 0.835 in the GA vs. GG genetic model and 0.726 in GA/AA vs. GG genetic model. For MTHFR rs3753584 locus, the power of the present study was 0.984 in the CT vs. TT genetic model and 0.965 in CT/CC vs. TT genetic model. When we focused on the MTHFR rs965118 polymorphism, the power value was 0.935 in the CT vs. TT genetic model and 0.910 in CT/CC vs. TT genetic model. In addition, the power of MTHFR Ars1801133Trs3753584Grs4845882Ars4846048Trs9651118 and MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 haplotypes were 0.771 and 0.844, respectively.

In the subgroup without chronic HBV infection, we found that the power value was 0.946 in GA vs. GG genetic model and 0.944 in GA/AA vs. GG genetic model for MTHFR rs1801133 polymorphism and 0.852 in the CT vs. TT genetic model and 0.803 in CT/CC vs. TT genetic model for MTHFR rs3753584 locus. The power value of other subgroups was less than 0.8 (data were not shown).

Discussion

The HCC susceptibility to individuals may be affected by certain environmental risk factors [27,28]. The high HCC morbidity in certain regions of sub-Saharan Africa and Asia largely attributes to the prevalence of chronic HBV infection. However, individual’s hereditary factor also could influence the risk of HCC [28,29]. MTHFR and 5-MTHF may be implicated in DNA methylation, synthesis and repair. Thus, variants in MTHFR could influence the risk of cancer. Several case–control studies were designed to identify the association of MTHFR variants with HCC risk. However, the included participants in these studies were relatively small. In addition, the observations of pooled analyses were conflicting [30–33]. Here, we conducted a study with related large sample sizes to assess a potential correlation between MTHFR SNPs and susceptibility of HCC. Our results suggested the associations of MTHFR rs3753584, rs9651118 and rs1801133 polymorphisms with HCC development. In addition, haplotype analysis of MTHFR gene suggested that MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 increased the susceptibility of HCC. The power value of the present study also conferred these associations (power value > 0.80).

Rs1801133 polymorphism is the most extensively studied SNP in MTHFR gene. This SNP is a missense variant (Ala→Val at 226 position). MTHFR is vital enzyme in the process of remethylation, and catalyzes Hcy to Met. Rs1801133 locus codes the NH2-terminal catalytic domain of MTHFR. MTHFR rs1801133 A allele decreases the activity of protein enzyme [34]. A few case–control studies identified that rs1801133 increased the susceptibility of HCC [15,35,36]. Another study identified that this SNP did not confer risk to HCC [37]. However, Jiao et al. [11] reported that AA genotype and A allele of MTHFR rs1801133 may confer a protective effect on HCC in HBV-infected individuals. Some pooled analysis investigated a potential correlation of MTHFR rs1801133 with HCC risk. Several meta-analyses reported that MTHFR rs1801133 A allele might increase the risk of HCC [31–,33,38]. However, in another meta-analysis, Qin et al. [30] suggested that there was no significant association between MTHFR rs1801133 locus and HCC risk. The observations were controversial. Thus, we conducted a related large sample size study to investigate the correlation of rs1801133 locus with HCC risk. We concluded that rs1801133 A allele was a protective factor for HCC. Recently, some pooled-analyses demonstrated that this locus is protective for the development of colorectal cancer in Asians [39,40]. An Ala→Val substitute at 226 position in MTHFR may increase the 5,10-methylenetetrahydrofolate for DNA synthesis [41,42], which may be protective for cancer development. In the future, more studies should be conducted to identify whether G→A variant in MTHFR rs1801133 locus is a protective factor for HCC development.

To our knowledge, we first clarified the impact of MTHFR rs3753584 T>C polymorphism with hepatocarcinogenesis. MTHFR rs3753584 is located in nearGene-5, which may regulate the stability, transcription and translation of RNA. Liu et al. [43] suggested that MTHFR rs3753584 locus affected the development of lung cancer. Another study found that MTHFR rs3753584 variants increased the susceptibility of colon cancer [44]. Here, we identified that MTHFR rs3753584 may confer a risk to HCC. Our observation was similar to those findings mentioned above.

Lu et al. [45] conducted a study to detect the correlation of MTHFR rs9651118 with susceptibility to breast cancer (BC), and the results suggested that rs9651118 CC genotype decreased the risk of BC. Additionally, in Caucasians, Swartz et al. [46] reported that this variant might be a factor that decreased the susceptibility of lung cancer. In Asians, Ding et al. [47] reported that MTHFR rs9651118 T>C polymorphism has a tendency to decrease risk of esophagogastric junction adenocarcinoma. In the present study, we first explored the association between MTHFR rs9651118 T>C polymorphism and risk of HCC. Our findings clarified that MTHFR rs9651118 C allele was relevant to a protective role for hepatocarcinogenesis. MTHFR rs9651118 was an intron SNP, which may influence the alternative splicing pattern. A functional study indicated that rs9651118 CC genotype of MTHFR, compared with TT genotype, reduced the Hcy level [48]. Recently, a dose–response meta-analysis concluded that each 5 μmol/l Hcy level promoting increased the incidence of digestive tract cancer by 7% [49]. Thus, MTHFR rs9651118 C allele may reduce the Hcy level, and then decrease the susceptibility of HCC.

Our findings suggested MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 increased the susceptibility of HCC. We first investigated the potential correlation of these MTHFR tagging SNPs haplotypes with HCC susceptibility. It could be used as a potential biomarker for HCC diagnosis. Previous investigations have focused on the relationship between MTHFR haplotypes of these tagging SNPs and cancer susceptibility; however, MTHFR Grs1801133Trs3753584Grs4845882Ars4846048Trs9651118 was not found to be associated with the risk of non-small cell lung cancer [50] and esophagogastric junction adenocarcinoma [47]. In the future, these findings should be further validated.

This hospital-based study might have some potential limitations. First, though we recruited 1507 subjects to investigate a relationship of MTHFR tagging SNPs and the risk of HCC here, the sample size might be insufficient to identify weak associations of HCC. Second, in the present study, we only included several risk factors (e.g. sex, chronic HBV infection, age, smoking and drinking), other environmental factors were not considered. Third, the present study was hospital-based, which could not fully represent the Chinese population and the bias might have happened. In the future, population-based investigations are needed to further explore the role of MTHFR SNPs to risk of HCC. Fourth, the intake of folate and diet habits were not collected in our study. Thus, we did not focus on the association of MTHFR variants and folate level with the susceptibility of HCC. Finally, we only evaluated the MTHFR SNPs with HCC, polymorphisms in other one-carbon metabolism genes were not included.

Taken together, in Chinese Han population, MTHFR rs9651118 and rs1801133 polymorphisms may be protective for HCC. However, MTHFR rs3753584 polymorphism is a candidate for susceptibility to HCC. In the future, these findings should be further validated in additional studies.

Acknowledgments

We appreciate all subjects who participated in the present study. We wish to thank Dr. Yan Liu (Genesky Biotechnologies Inc., Shanghai, China) for technical support.

Author Contribution

Conceived and designed the experiments: L.L. and W.T. Performed the experiments: S.Z., J.J. and J.L. Analyzed the data: Y.C. Contributed reagents/materials/analysis tools: S.Z., J.J. and Y.C. Wrote the manuscript: S.Z. and J.J.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by the Application and Basic Research Funds of Changzhou, Jiangsu Province [grant number CJ20180068].

Abbreviations

     
  • BC

    breast cancer

  •  
  • BCLC

    Barcelona Clinic Liver Cancer

  •  
  • CI

    confidence interval

  •  
  • HBV

    hepatitis B virus

  •  
  • HCC

    hepatocellular carcinoma

  •  
  • Hcy

    homocysteine

  •  
  • HWE

    Hardy–Weinberg equilibrium

  •  
  • LC

    liver cancer

  •  
  • MTHFR

    methylenetetrahydrofolate reductase

  •  
  • OR

    odds ratio

  •  
  • SD

    standard deviation

  •  
  • SNP

    single nucleotide polymorphism

  •  
  • 5-MTHF

    5-methyltetrahydrofolate

References

References
1.
Chen
W.
,
Zheng
R.
,
Baade
P.D.
et al.
(
2016
)
Cancer statistics in China, 2015
.
CA Cancer J. Clin.
66
,
115
132
[PubMed]
2.
Chen
W.
,
Zheng
R.
,
Zeng
H.
et al.
(
2015
)
Annual report on status of cancer in China, 2011
.
Chinese J. Cancer Res.
27
,
2
12
3.
Pinero
F.
,
Pages
J.
,
Marciano
S.
et al.
(
2018
)
Fatty liver disease, an emerging etiology of hepatocellular carcinoma in Argentina
.
World J. Hepatol.
10
,
41
50
4.
Liew
Z.H.
,
Goh
G.B.
,
Hao
Y.
et al.
(
2018
)
Comparison of hepatocellular carcinoma in patients with cryptogenic versus hepatitis B etiology: a study of 1079 cases over 3 decades
.
Dig. Dis. Sci.
64
,
585
590
[PubMed]
5.
Ioannou
G.N.
,
Green
P.
,
Lowy
E.
et al.
(
2018
)
Differences in hepatocellular carcinoma risk, predictors and trends over time according to etiology of cirrhosis
.
PLoS ONE
13
,
e0204412
[PubMed]
6.
Jaquet
A.
,
Tchounga
B.
,
Tanon
A.
et al.
(
2018
)
Etiology of hepatocellular carcinoma in West Africa, a case-control study
.
Int. J. Cancer
143
,
869
877
[PubMed]
7.
Ghouri
Y.A.
,
Mian
I.
and
Rowe
J.H.
(
2017
)
Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis
.
J. Carcinogenesis
16
,
1
8.
Yang
Y.
,
Zhang
D.
,
Feng
N.
et al.
(
2014
)
Increased intake of vegetables, but not fruit, reduces risk for hepatocellular carcinoma: a meta-analysis
.
Gastroenterology
147
,
1031
1042
[PubMed]
9.
Zhang
W.
,
Xiang
Y.B.
,
Li
H.L.
et al.
(
2013
)
Vegetable-based dietary pattern and liver cancer risk: results from the Shanghai women’s and men’s health studies
.
Cancer Sci.
104
,
1353
1361
[PubMed]
10.
Bamia
C.
,
Lagiou
P.
,
Jenab
M.
et al.
(
2015
)
Fruit and vegetable consumption in relation to hepatocellular carcinoma in a multi-centre, European cohort study
.
Br. J. Cancer
112
,
1273
1282
[PubMed]
11.
Jiao
X.
,
Luo
Y.
,
Yang
B.
et al.
(
2017
)
The MTHFR C677T mutation is not a risk factor recognized for HBV-related HCC in a population with a high prevalence of this genetic marker
.
Infect. Genet. Evol.
49
,
66
72
12.
Qiao
K.
,
Zhang
S.
,
Trieu
C.
et al.
(
2017
)
Genetic polymorphism of MTHFR C677T Influences susceptibility to HBV-related hepatocellular carcinoma in a Chinese population: a case-control study
.
Clin. Lab.
63
,
787
795
[PubMed]
13.
Wang
C.
,
Xie
H.
,
Lu
D.
et al.
(
2018
)
The MTHFR polymorphism affect the susceptibility of HCC and the prognosis of HCC liver transplantation
.
Clin. Transl. Oncol.
20
,
448
456
14.
Peres
N.P.
,
Galbiatti-Dias
A.L.
,
Castanhole-Nunes
M.M.
et al.
(
2016
)
Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma
.
World J. Hepatol.
8
,
1234
1243
15.
Zhang
H.
,
Liu
C.
,
Han
Y.C.
et al.
(
2015
)
Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case-control study
.
Tumour Biol.
36
,
997
1002
[PubMed]
16.
Pons
F.
,
Varela
M.
and
Llovet
J.M.
(
2005
)
Staging systems in hepatocellular carcinoma
.
HPB
7
,
35
41
17.
Livraghi
T.
,
Brambilla
G.
,
Carnaghi
C.
et al.
(
2010
)
Is it time to reconsider the BCLC/AASLD therapeutic flow-chart?
J. Surg. Oncol.
102
,
868
876
[PubMed]
18.
Tang
W.
,
Zhang
S.
,
Qiu
H.
et al.
(
2014
)
Genetic variations in MTHFR and esophageal squamous cell carcinoma susceptibility in Chinese Han population
.
Med. Oncol.
31
,
915
[PubMed]
19.
Zou
C.
,
Qiu
H.
,
Tang
W.
et al.
(
2018
)
CTLA4 tagging polymorphisms and risk of colorectal cancer: a case-control study involving 2,306 subjects
.
Onco Targets Ther.
11
,
4609
4619
20.
Chen
Y.
,
Tang
W.
,
Liu
C.
et al.
(
2018
)
miRNA-146a rs2910164 C>G polymorphism increased the risk of esophagogastric junction adenocarcinoma: a case-control study involving 2,740 participants
.
Cancer Manag. Res.
10
,
1657
1664
21.
Tang
W.
,
Chen
S.
,
Liu
J.
et al.
(
2019
)
Investigation of IGF1, IGF2BP2, and IGFBP3 variants with lymph node status and esophagogastric junction adenocarcinoma risk
.
J. Cell. Biochem.
120
,
5510
5518
22.
Qiu
H.
,
Wang
Y.
,
Kang
M.
et al.
(
2017
)
The relationship between IGF2BP2 and PPARG polymorphisms and susceptibility to esophageal squamous-cell carcinomas in the eastern Chinese Han population
.
Onco Targets Ther.
10
,
5525
5532
23.
Qiu
H.
,
Lin
X.
,
Tang
W.
et al.
(
2017
)
Investigation of TCF7L2, LEP and LEPR polymorphisms with esophageal squamous cell carcinomas
.
Oncotarget
8
,
109107
109119
[PubMed]
24.
Qiu
H.
,
Cheng
C.
,
Wang
Y.
et al.
(
2016
)
Investigation of cyclin D1 rs9344 G>A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects
.
Onco Targets Ther.
9
,
6641
6650
25.
Shi
Y.Y.
and
He
L.
(
2005
)
SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci
.
Cell Res.
15
,
97
98
[PubMed]
26.
Tang
W.
,
Qiu
H.
,
Ding
H.
et al.
(
2013
)
Association between the STK15 F31I polymorphism and cancer susceptibility: a meta-analysis involving 43,626 subjects
.
PLoS ONE
8
,
e82790
[PubMed]
27.
Ma
Y.
,
Yang
W.
,
Simon
T.G.
et al.
(
2018
)
Dietary patterns and risk of hepatocellular carcinoma among US men and women
.
Hepatology
70
,
577
586
28.
Rawla
P.
,
Sunkara
T.
,
Muralidharan
P.
et al.
(
2018
)
Update in global trends and aetiology of hepatocellular carcinoma
.
Contemp. Oncol.
22
,
141
150
29.
Kew
M.C.
(
2014
)
Hepatocellular carcinoma: epidemiology and risk factors
.
J. Hepatocell. Carcinoma
1
,
115
125
30.
Qin
X.
,
Peng
Q.
,
Chen
Z.
et al.
(
2013
)
The association between MTHFR gene polymorphisms and hepatocellular carcinoma risk: a meta-analysis
.
PLoS ONE
8
,
e56070
[PubMed]
31.
Jin
F.
,
Qu
L.S.
and
Shen
X.Z.
(
2009
)
Association between the methylenetetrahydrofolate reductase C677T polymorphism and hepatocellular carcinoma risk: a meta-analysis
.
Diagn. Pathol.
4
,
39
32.
Sun
H.
,
Han
B.
,
Zhai
H.
et al.
(
2014
)
Significant association between MTHFR C677T polymorphism and hepatocellular carcinoma risk: a meta-analysis
.
Tumour Biol.
35
,
189
193
[PubMed]
33.
Qi
Y.H.
,
Yao
L.P.
,
Cui
G.B.
et al.
(
2014
)
Meta-analysis of MTHFR C677T and A1298C gene polymorphisms: association with the risk of hepatocellular carcinoma
.
Clin. Res. Hepatol. Gastroenterol.
38
,
172
180
34.
Chai
W.
,
Zhang
Z.
,
Ni
M.
et al.
(
2015
)
Genetic association between methylenetetrahydrofolate reductase gene polymorphism and risk of osteonecrosis of the femoral head
.
BioMed Res. Int.
2015
,
196495
[PubMed]
35.
Fabris
C.
,
Toniutto
P.
,
Falleti
E.
et al.
(
2009
)
MTHFR C677T polymorphism and risk of HCC in patients with liver cirrhosis: role of male gender and alcohol consumption
.
Alcohol. Clin. Exp. Res.
33
,
102
107
[PubMed]
36.
Mu
L.N.
,
Cao
W.
,
Zhang
Z.F.
et al.
(
2007
)
Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and the risk of primary hepatocellular carcinoma (HCC) in a Chinese population
.
Cancer Causes Control
18
,
665
675
37.
Kwak
S.Y.
,
Kim
U.K.
,
Cho
H.J.
et al.
(
2008
)
Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population
.
Anticancer Res.
28
,
2807
2811
[PubMed]
38.
Qi
X.
,
Sun
X.
,
Xu
J.
et al.
(
2014
)
Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population
.
Tumour Biol.
35
,
1757
1762
[PubMed]
39.
Teng
Z.
,
Wang
L.
,
Cai
S.
et al.
(
2013
)
The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: a meta-analysis based on 71 research studies
.
PLoS ONE
8
,
e55332
[PubMed]
40.
Guo
X.P.
,
Wang
Y.
,
Zhao
H.
et al.
(
2014
)
Association of MTHFR C677T polymorphisms and colorectal cancer risk in Asians: evidence of 12,255 subjects
.
Clin. Transl. Oncol.
16
,
623
629
41.
Taioli
E.
,
Garza
M.A.
,
Ahn
Y.O.
et al.
(
2009
)
Meta- and pooled analyses of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer: a HuGE-GSEC review
.
Am. J. Epidemiol.
170
,
1207
1221
,
[PubMed]
42.
Frosst
P.
,
Blom
H.J.
,
Milos
R.
et al.
(
1995
)
A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase
.
Nat. Genet.
10
,
111
113
[PubMed]
43.
Liu
H.
,
Jin
G.
,
Wang
H.
et al.
(
2008
)
Association of polymorphisms in one-carbon metabolizing genes and lung cancer risk: a case-control study in Chinese population
.
Lung Cancer
61
,
21
29
[PubMed]
44.
Zhang
S.
,
Chen
S.
,
Chen
Y.
et al.
(
2017
)
Investigation of methylenetetrahydrofolate reductase tagging polymorphisms with colorectal cancer in Chinese Han population
.
Oncotarget
8
,
63518
63527
[PubMed]
45.
Lu
Q.
,
Jiang
K.
,
Li
Q.
et al.
(
2015
)
Polymorphisms in the MTHFR gene are associated with breast cancer risk and prognosis in a Chinese population
.
Tumour Biol.
36
,
3757
3762
[PubMed]
46.
Swartz
M.D.
,
Peterson
C.B.
,
Lupo
P.J.
et al.
(
2013
)
Investigating multiple candidate genes and nutrients in the folate metabolism pathway to detect genetic and nutritional risk factors for lung cancer
.
PLoS ONE
8
,
e53475
[PubMed]
47.
Ding
G.
,
Wang
Y.
,
Chen
Y.
et al.
(
2017
)
Methylenetetrahydrofolate reductase tagging polymorphisms are associated with risk of esophagogastric junction adenocarcinoma: a case-control study involving 2,740 Chinese Han subjects
.
Oncotarget
8
,
111482
111494
[PubMed]
48.
Zhou
B.S.
,
Bu
G.Y.
,
Li
M.
et al.
(
2014
)
Tagging SNPs in the MTHFR gene and risk of ischemic stroke in a Chinese population
.
Int. J. Mol. Sci.
15
,
8931
8940
[PubMed]
49.
Xu
J.
,
Zhao
X.
,
Sun
S.
et al.
(
2018
)
Homocysteine and digestive tract cancer risk: a dose-response meta-analysis
.
J. Oncol.
2018
,
3720684
50.
Ding
H.
,
Wang
Y.
,
Chen
Y.
et al.
(
2017
)
Methylenetetrahydrofolate reductase tagging polymorphisms are associated with risk of non-small cell lung cancer in eastern Chinese Han population
.
Oncotarget
8
,
110326
110336
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).