Abstract

Objective: To investigate whether microRNAs genes’ polymorphisms are associated with arthritis. Methods: The PubMed, Cochrane Library et al. were systematically searched to identify case–control studies, systematic reviews and meta-analyses. A meta-analysis was performed to calculate odds ratios (ORs), and confidence intervals (CIs) at 95% using fixed-effect model or random-effects model. Results: Twenty-two case–control studies involving 10489 participants fulfilled the inclusion criteria. MiR-146a rs2910164 (G/C) was not significantly associated with the risk of rheumatoid arthritis (RA) in any model. Significant associations were found between miR-146a rs2910164 (G/C) and the risk of psoriatic arthritis (PsA) in the heterozygous model and the dominant model. The heterozygous model showed a significant association between the miR-146a rs2910164 (G/C) polymorphism and ankylosing spondylitis (AS). And there was no significant association of miR-146a rs2910164 (G/C) with risk of juvenile rheumatoid arthritis (JRA) at any model. Additionally, there was a significant association of miR-499 rs3746444 (T/C) with risk of RA at two genetic models, and with a moderate heterogeneity. When subgroup analysis by ethnicity, significant associations were almost found between miR-499 rs3746444 (T/C) and the risk of RA in any model in Caucasian populations, and there is no heterogeneity. Conclusions: The association of miR-146a rs2910164 (G/C) with RA was not found. And there was a significant association between miR-146a rs2910164(G/C) and PsA or AS. MiR-499 rs3746444 (T/C) was associated with RA in Caucasian populations. These findings did not support the genetic association between miR-146a rs2910164 (G/C) and JRA susceptibility, as well as the association of miR-196a-2 rs11614913 (C/T), miR-146a rs2431697, miR-146a rs57095329, miR-149 rs22928323 with arthritis.

Introduction

Arthritis is a general term for acute or chronic inflammatory diseases of joint [1]. Common types include diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), juvenile rheumatoid arthritis (JRA) and other forms of arthritis. Arthritis is characterized by the progression of synovial inflammation leading to joint destruction [2], causing complications such as pain and limited activity, resulting in continuous impairment of physical function and quality of life [3]. Approximately 23% of adults experience arthritis in the United States [4], and arthritis is the most common cause of disability in the past 15 years [5]. In addition, the muscle atrophy of children with JRA progresses rapidly, leading to skeletal developmental disorders, affecting their growth and development [6]. Patients with arthritis may need more social and nursing care. The increased social and economic burdens associated with arthritis worldwide make their targeting treatment a major public health goal.

The etiology of arthritis is unknown, but genetic factors are thought to be important in the pathogenesis and progress [7,8]. MicroRNA (miRNA) is a class of noncoding RNA regulating at least one-third of human protein-encoding genes [9], playing an important role in proliferation, apoptosis, differentiation, immune response and inflammation [10–12]. It was thought that miRNAs fine-tune the immune response and the inflammatory response through the negative feedback loop of the Toll/Interleukin-1 (IL-1) receptor (TIR) signaling downstream molecule [13]. By studying miRNAs among arthritis patients, it was found that aberrant expression of miRNA is associated with arthritis, which is manifested by up-regulation of miRNA concentrations in arthritis patients [14–16]. Single nucleotide polymorphisms (SNPs) presenting in the miRNA gene region may affect the property of miRNA through altering the miRNA expression and/or maturation, leading to aberrant miRNA regulation [17]. Molecular epidemiological studies showed robust evidence that the presence of these genetic polymorphisms would be associated with a variety of diseases, such as inflammatory bowel [18], systemic lupus erythematosus (SLE) [19], some cancers [20] and RA [21,22]. Recently, studies assessing miR-146a rs2910164 or miR-499 rs3746444 polymorphism and risk of RA have been published [23–25], but the results are not always consistent. And other studies add to the evidence base of the associations of other miRNA polymorphism with arthritis risk but are not limited to RA – but not exclusively – the amount and impact of inflammation [24,26]. Therefore, we aimed to perform a systematic review and meta-analysis to systematically evaluate the relationship between miRNA polymorphism and arthritis risk, which can provide a further reference for finding excellent biomarkers and potential therapeutic targets of arthritis.

Methods

This meta-analysis design was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) prospectively.

Study selection

A systematic search of the PubMed, Cochrane Library, ISI Web of Science and Embase databases was conducted through May 2018 using the search terms ‘microRNA OR miRNA OR microRNAs’, ‘arthritis’ and ‘polymorphism or variant or mutation or polymorphisms or variants or mutations’, without any languages’ restrictions. The original research of published systematic reviews or meta-analyses were included for further relevant studies. Inclusion criteria of studies for the meta-analyses were published articles: (i) evaluation of the association between microRNAs genes polymorphisms and arthritis; (ii) genotype/allele distributions should be provided for estimating the odds ratios (ORs) and 95% confidence intervals (CIs) and (iii) a case–control design. Exclusion criteria: (i) abstracts, editorial, letters, case reports and other studies which were not focusing on humans; (ii) repeated or overlapping publications; (iii) studies with no detailed genotype distributions or allele data and (iv) family-based studies of pedigrees.

Data extraction

The data from eligible studies were extracted independently by two researchers based on the inclusion and exclusion criteria. The following information was collected from each study: first author, publication year, country, ethnicity, control source, disease type, genotyping technology, numbers of cases and controls, genotype and allele distributions, Hardy–Weinberg equilibrium (HWE) in control subjects. Disagreements were resolved by consensus or a third researcher.

Quality score assessment

Study qualities were judged independently by two researchers according to the Newcastle–Ottawa Scale (NOS) (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp). According to the NOS, study qualities were evaluated based on the following three aspects: selection, comparability, exposure. The NOS uses a star grading system, with the minimum of zero point and the maximum of nine points. The studies graded with >7 stars were considered to be a high-quality study. Disagreements were resolved by consensus or a third researcher.

Statistical analysis

The associations between microRNAs genes polymorphisms and arthritis was evaluated from the case–control studies using ORs and CIs at 95%. The pooled ORs and CIs were calculated, and their significance was determined by P-value to demonstrate the potential relationship with arthritis. When the P-value of the Z test was less than 0.05 was considered statistically significant. In our study, five genetic models for each microRNA (allelic models, homozygote model, heterozygous model, recessive model and dominant model) were analyzed. The pooled effect of all subjects based on the disease type for each microRNA were compared. Meta-analysis was performed when more than one study was included in the study.

Heterogeneity among studies was assessed by Chi-squared based Q-test and I2statistics. If P > 0.10 and I2 < 50%, the fixed-effects model (FEM) was applied to estimate pooled OR, else the random-effects model (REM) was used. HWE was assessed for each study by Chi-square test in control groups, and P-value <0.05 was considered a significant departure from HWE. In addition, stratified comparisons based on disease were made to further explore the potential heterogeneity according to female, different ethnicity (Asian and Caucasian), control source (hospital-based (HB) and population-based (PB) population), quality score of studies.

To investigate the potential origin of heterogeneity and validate the reliability of this meta-analysis, sensitivity analysis was performed to evaluate the effect of each study on the combined ORs by sequentially excluding individual studies. Potential publication bias was visually assessed by Begg’s funnel plot and statistically determined by Egger linear regression test. Step-down Bonferroni’s test [27] was used for a multiple testing correction for P-value estimation and the Pcorr-value less than 0.05 was considered statistically significant. All statistical analyses were conducted using Stata version SE 11 (StataCorp LP, College Station, TX).

Results

Study inclusion and characteristics

The literature search using databases yielded 492 potentially eligible records, and 40 full texts of these records were reviewed. Of 40 records, 24 records were case–control studies, 14 records were systematic reviews or meta-analyses, and 2 records were case–control studies which included a meta-analysis. After reading the full-text, 21 case–control studies met the inclusion criteria. In addition, one original research from published systematic reviews or meta-analyses was included for our meta-analysis. Supplementary Table S1 summarizes the case–control studies included in the systematic reviews or meta-analyses. The process of study selection was shown in Figure 1. Of the 22 studies that were included in the meta-analyses, there were a total of 10489 participants (4509 cases and 5980 controls) involving six SNPs of microRNAs: miR-146a rs2910164, miR-499 rs3746444, miR-196a-2 rs11614913, miR-146a rs2431697, miR-146a rs57095329, miR-149 rs22928323, and four arthritis: RA, PsA, JRA, AS. Specifically, there were 17 studies on miR-146a rs2910164 (G/C) (including: 11 focusing on RA [23–25,28–35], 2 focusing on PsA [26,36], 2 focusing on JRA [37,38], 2 focusing on AS [8,39]), 10 studies on miR-499 rs3746444 (T/C) (including: 9 focusing on RA [24,25,31,32,34,40–43], 1 focusing on AS [8]), 2 studies on miR-196a-2 rs11614913 (C/T) focusing on RA [24,41], 1 study on miR-146a rs2431697 (T/C) focusing on AS [39], 1 study on miR-146a rs57095329 (A/G) focusing on AS [39], 1 study on miR-149 rs22928323 (T/C) focusing on RA [44]. The characteristics of included studies are shown in Table 1. The distributions of microRNAs genes polymorphisms alleles and genotypes are shown in Table 2.

Literature Search and Screening Process

Figure 1
Literature Search and Screening Process
Figure 1
Literature Search and Screening Process
Table 1
Characteristics of 22 included studies in this meta-analysis
Author Year Country Ethnicity Cases Control Control source Disease Polymorphisms studied Quality score 
Aleman-Avila 2017 Mexico Caucasian 412 486 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C), miR-196a-2 rs11614913 (C/T) 
Ayeldeen 2018 Egypt Caucasian 52 56 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Ben Hassine 2017 Tunisia Caucasian 165 150 PB RA miR-146a rs2910164 (G/C) 
Bogunia-Kubik 2016 Poland Caucasian 111 130 PB RA miR-146a rs2910164 (G/C) 
Chatzikyriakidou 2010a Greece Caucasian 136 147 PB RA miR-146a rs2910164 (G/C) 
Chatzikyriakidou 2010b Greece Caucasian 29 66 PB PsA miR-146a rs2910164 (G/C) 
Ciccacci 2016 Italy Caucasian 192 278 PB RA miR-146a rs2910164 (G/C) 
El-Shal 2013 Egypt Caucasian 217 245 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Fattah 2018 Egypt Caucasian 100 100 PB RA miR-499 rs3746444(T/C) 
Hashemi 2013 Iran Caucasian 104 110 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Jimenez-Morales 2012 Mexico Caucasian 210 531 PB JRA miR-146a rs2910164 (G/C) 
Maharaj 2018 South Africa Indian and Caucasian 116 100 PB PsA miR-146a rs2910164 (G/C) 
Niu 2015 China Asian 611 617 PB AS miR-146a rs2910164 (G/C), miR-146a rs2431697 (T/C), miR-146a rs57095329 (A/G) 
Qian 2012 China Asian 123 220 HB RA miR-146a rs2910164 (G/C) 
Singh 2014 India Caucasian 150 216 PB JRA miR-146a rs2910164 (G/C) 
Toraih 2016 Egypt Caucasian 95 200 PB RA miR-499 rs3746444(T/C), miR-196a-2 rs11614913 (C/T) 
Xiao 2015 China Asian 186 120 HB RA miR-149 rs22928323 (T/C) 
Xu 2015 China Asian 102 105 HB AS miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Yang 2011 China Asian 208 240 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Yang 2017 China Asian 386 576 PB RA miR-499 rs3746444(T/C) 
Zhou 2015 China Asian 598 821 HB RA miR-146a rs2910164 (G/C) 
Zhang 2013 China Asian 206 466 HB RA miR-499 rs3746444(T/C) 
Author Year Country Ethnicity Cases Control Control source Disease Polymorphisms studied Quality score 
Aleman-Avila 2017 Mexico Caucasian 412 486 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C), miR-196a-2 rs11614913 (C/T) 
Ayeldeen 2018 Egypt Caucasian 52 56 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Ben Hassine 2017 Tunisia Caucasian 165 150 PB RA miR-146a rs2910164 (G/C) 
Bogunia-Kubik 2016 Poland Caucasian 111 130 PB RA miR-146a rs2910164 (G/C) 
Chatzikyriakidou 2010a Greece Caucasian 136 147 PB RA miR-146a rs2910164 (G/C) 
Chatzikyriakidou 2010b Greece Caucasian 29 66 PB PsA miR-146a rs2910164 (G/C) 
Ciccacci 2016 Italy Caucasian 192 278 PB RA miR-146a rs2910164 (G/C) 
El-Shal 2013 Egypt Caucasian 217 245 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Fattah 2018 Egypt Caucasian 100 100 PB RA miR-499 rs3746444(T/C) 
Hashemi 2013 Iran Caucasian 104 110 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Jimenez-Morales 2012 Mexico Caucasian 210 531 PB JRA miR-146a rs2910164 (G/C) 
Maharaj 2018 South Africa Indian and Caucasian 116 100 PB PsA miR-146a rs2910164 (G/C) 
Niu 2015 China Asian 611 617 PB AS miR-146a rs2910164 (G/C), miR-146a rs2431697 (T/C), miR-146a rs57095329 (A/G) 
Qian 2012 China Asian 123 220 HB RA miR-146a rs2910164 (G/C) 
Singh 2014 India Caucasian 150 216 PB JRA miR-146a rs2910164 (G/C) 
Toraih 2016 Egypt Caucasian 95 200 PB RA miR-499 rs3746444(T/C), miR-196a-2 rs11614913 (C/T) 
Xiao 2015 China Asian 186 120 HB RA miR-149 rs22928323 (T/C) 
Xu 2015 China Asian 102 105 HB AS miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Yang 2011 China Asian 208 240 PB RA miR-146a rs2910164 (G/C), miR-499 rs3746444(T/C) 
Yang 2017 China Asian 386 576 PB RA miR-499 rs3746444(T/C) 
Zhou 2015 China Asian 598 821 HB RA miR-146a rs2910164 (G/C) 
Zhang 2013 China Asian 206 466 HB RA miR-499 rs3746444(T/C) 
Table 2
Distributions of microRNAs genes polymorphisms alleles and genotypes
Gene Polymorphisms Author Year HWE Cases GN (%) Cases CN (%) Controls GN (%) Controls CN (%) Cases GG Cases GC Cases CC Controls GG Controls GC Controls CC 
miR-146a rs2910164 (G/C) Aleman-Avila 2017 Yes 532 (64.90) 288 (35.10) 658 (67.70) 314 (32.30) 168 196 46 218 222 46 
 Ayeldeen 2018 Yes 50 (48.00) 54 (52.00) 36 (32.10) 76 (67.90) 11 28 13 28 24 
 Hassine 2017 Yes 251 (76.00) 79 (24.00) 205 (68.00) 95 (32.00) 94 63 68 69 13 
 Bogunia-Kubik 2016 Yes 176 (79.28) 46 (20.72) 212 (81.54) 48 (18.46) 72 32 88 36 
 Chatzikyriakidou 2010a Yes 199 (73.16) 73 (26.84) 213 (72.45) 81 (27.55) 73 53 10 80 53 14 
 Ciccacci 2016 Yes 287 (74.34) 97 (25.66) 433 (72.65) 163 (27.35) 109 69 14 158 117 23 
 El-Shal 2013 No 163 (37.60) 271 (62.40) 149 (30.40) 341 (69.60) 30 103 84 15 119 111 
 Hashemi 2013 Yes 153 (73.60) 55 (26.40) 165 (75.00) 55 (25.00) 57 39 64 37 
 Qian 2012 Yes 97 (39.00) 149 (61.00) 179 (41.00) 261 (59.00) 16 65 42 35 109 76 
 Yang 2011 Yes 151 (36.30) 265 (63.70) 176 (36.67) 304 (63.33) 28 95 85 30 116 94 
 Zhou 2015 Yes 511 (42.73) 685 (57.27) 687 (41.84) 955 (58.16) 114 283 201 151 385 285 
 Chatzikyriakidou 2010b Yes 40 (68.97) 18 (31.03) 96 (72.73) 36 (27.27) 14 12 39 18 
 Maharaj 2018 Yes 149 (64.22) 83 (35.78) 148 (74.00) 52 (26.00) 43 63 10 52 44 
 Jimenez-Morales 2012 Yes 284 (68.00) 136 (32.00) 701 (66.00) 361 (34.00) 102 80 28 236 229 66 
 Singh 2014 Yes 206 (68.66) 94 (31.34) 315 (72.92) 117 (27.08) 75 56 19 112 91 13 
 Niu 2015 Yes 496 (41.20) 708 (58.80) 502 (41.10) 718 (58.90) 107 282 213 93 316 201 
 Xu 2015 Yes 100 (49.02) 104 (50.98) 73 (34.76) 137 (65.24) 25 50 27 12 49 44 
Gene Polymorphisms Author Year HWE Cases GN (%) Cases CN (%) Controls GN (%) Controls CN (%) Cases GG Cases GC Cases CC Controls GG Controls GC Controls CC 
miR-146a rs2910164 (G/C) Aleman-Avila 2017 Yes 532 (64.90) 288 (35.10) 658 (67.70) 314 (32.30) 168 196 46 218 222 46 
 Ayeldeen 2018 Yes 50 (48.00) 54 (52.00) 36 (32.10) 76 (67.90) 11 28 13 28 24 
 Hassine 2017 Yes 251 (76.00) 79 (24.00) 205 (68.00) 95 (32.00) 94 63 68 69 13 
 Bogunia-Kubik 2016 Yes 176 (79.28) 46 (20.72) 212 (81.54) 48 (18.46) 72 32 88 36 
 Chatzikyriakidou 2010a Yes 199 (73.16) 73 (26.84) 213 (72.45) 81 (27.55) 73 53 10 80 53 14 
 Ciccacci 2016 Yes 287 (74.34) 97 (25.66) 433 (72.65) 163 (27.35) 109 69 14 158 117 23 
 El-Shal 2013 No 163 (37.60) 271 (62.40) 149 (30.40) 341 (69.60) 30 103 84 15 119 111 
 Hashemi 2013 Yes 153 (73.60) 55 (26.40) 165 (75.00) 55 (25.00) 57 39 64 37 
 Qian 2012 Yes 97 (39.00) 149 (61.00) 179 (41.00) 261 (59.00) 16 65 42 35 109 76 
 Yang 2011 Yes 151 (36.30) 265 (63.70) 176 (36.67) 304 (63.33) 28 95 85 30 116 94 
 Zhou 2015 Yes 511 (42.73) 685 (57.27) 687 (41.84) 955 (58.16) 114 283 201 151 385 285 
 Chatzikyriakidou 2010b Yes 40 (68.97) 18 (31.03) 96 (72.73) 36 (27.27) 14 12 39 18 
 Maharaj 2018 Yes 149 (64.22) 83 (35.78) 148 (74.00) 52 (26.00) 43 63 10 52 44 
 Jimenez-Morales 2012 Yes 284 (68.00) 136 (32.00) 701 (66.00) 361 (34.00) 102 80 28 236 229 66 
 Singh 2014 Yes 206 (68.66) 94 (31.34) 315 (72.92) 117 (27.08) 75 56 19 112 91 13 
 Niu 2015 Yes 496 (41.20) 708 (58.80) 502 (41.10) 718 (58.90) 107 282 213 93 316 201 
 Xu 2015 Yes 100 (49.02) 104 (50.98) 73 (34.76) 137 (65.24) 25 50 27 12 49 44 
    Cases TN (%) Cases CN (%) Controls TN (%) Controls CN (%) Cases TT Cases TC Cases CC Controls TT Controls TC Controls CC 
miR-499 rs3746444 (T/C) Aleman-Avila 2017 Yes 761 (92.40) 63 (7.60) 910 (93.60) 62 (6.40) 352 57 425 60 
 Toraih 2016 No 115 (60.50) 75 (39.50) 232 (58.00) 168 (42.00) 50 15 30 82 68 50 
 Ayeldeen 2018 Yes 49 (47.10) 55 (52.90) 69 (61.60) 43 (38.40) 13 23 16 21 27 
 El-Shal 2013 Yes 319 (73.50) 115 (26.50) 404 (82.40) 86 (17.60) 113 93 11 167 70 
 Fattah 2018 Yes 119 (59.50) 81 (40.50) 139 (69.50) 61 (30.50) 33 53 14 49 41 10 
 Hashemi 2013 No 124 (59.60) 84 (40.40) 173 (78.60) 47 (21.40) 46 32 26 74 25 11 
 Yang 2011 Yes 360 (86.54) 56 (13.46) 417 (86.88) 63 (13.12) 159 42 182 53 
 Yang 2017 Yes 663 (85.90) 109 (14.10) 1011 (87.80) 141 (12.20) 282 99 443 125 
 Zhang 2013 Yes 362 (87.86) 50 (12.14) 802 (86.05) 130 (13.95) 159 44 346 110 10 
 Xu 2015 Yes 180 (88.24) 24 (11.76) 179 (85.24) 31 (14.76) 79 22 74 31 
    Cases TN (%) Cases CN (%) Controls TN (%) Controls CN (%) Cases TT Cases TC Cases CC Controls TT Controls TC Controls CC 
miR-499 rs3746444 (T/C) Aleman-Avila 2017 Yes 761 (92.40) 63 (7.60) 910 (93.60) 62 (6.40) 352 57 425 60 
 Toraih 2016 No 115 (60.50) 75 (39.50) 232 (58.00) 168 (42.00) 50 15 30 82 68 50 
 Ayeldeen 2018 Yes 49 (47.10) 55 (52.90) 69 (61.60) 43 (38.40) 13 23 16 21 27 
 El-Shal 2013 Yes 319 (73.50) 115 (26.50) 404 (82.40) 86 (17.60) 113 93 11 167 70 
 Fattah 2018 Yes 119 (59.50) 81 (40.50) 139 (69.50) 61 (30.50) 33 53 14 49 41 10 
 Hashemi 2013 No 124 (59.60) 84 (40.40) 173 (78.60) 47 (21.40) 46 32 26 74 25 11 
 Yang 2011 Yes 360 (86.54) 56 (13.46) 417 (86.88) 63 (13.12) 159 42 182 53 
 Yang 2017 Yes 663 (85.90) 109 (14.10) 1011 (87.80) 141 (12.20) 282 99 443 125 
 Zhang 2013 Yes 362 (87.86) 50 (12.14) 802 (86.05) 130 (13.95) 159 44 346 110 10 
 Xu 2015 Yes 180 (88.24) 24 (11.76) 179 (85.24) 31 (14.76) 79 22 74 31 
    Cases CN (%) Cases TN (%) Controls CN (%) Controls TN (%) Cases CC Cases CT Cases TT Controls CC Controls CT Controls TT 
miR-196a-2 rs11614913 (C/T) Aleman-Avila 2017 Yes 497 (60.30) 327 (39.70) 594 (61.10) 378 (38.90) 142 213 57 182 230 74 
 Toraih 2016 No 145 (76.30) 45 (23.70) 290 (72.50) 110 (27.50) 53 39 110 70 20 
    Cases TN (%) Cases CN (%) Controls TN (%) Controls CN (%) Cases TT Cases TC Cases CC Controls TT Controls TC Controls CC 
miR-146a rs2431697 (T/C) Niu 2015 No 1005 (82.50) 213 (17.50) 1012 (82.10) 220 (17.90) 413 179 17 420 172 24 
    Cases CN (%) Cases TN (%) Controls CN (%) Controls TN (%) Cases CC Cases CT Cases TT Controls CC Controls CT Controls TT 
miR-196a-2 rs11614913 (C/T) Aleman-Avila 2017 Yes 497 (60.30) 327 (39.70) 594 (61.10) 378 (38.90) 142 213 57 182 230 74 
 Toraih 2016 No 145 (76.30) 45 (23.70) 290 (72.50) 110 (27.50) 53 39 110 70 20 
    Cases TN (%) Cases CN (%) Controls TN (%) Controls CN (%) Cases TT Cases TC Cases CC Controls TT Controls TC Controls CC 
miR-146a rs2431697 (T/C) Niu 2015 No 1005 (82.50) 213 (17.50) 1012 (82.10) 220 (17.90) 413 179 17 420 172 24 
    Cases AN (%) Cases GN (%) Controls AN (%) Controls GN (%) Cases AA Cases AG Cases GG Controls AA Controls AG Controls GG 
miR-146a rs57095329 (A/G) Niu 2015 Yes 976 (80.30) 240 (19.70) 991 (80.80) 235 (19.20) 391 194 23 404 183 26 
    Cases AN (%) Cases GN (%) Controls AN (%) Controls GN (%) Cases AA Cases AG Cases GG Controls AA Controls AG Controls GG 
miR-146a rs57095329 (A/G) Niu 2015 Yes 976 (80.30) 240 (19.70) 991 (80.80) 235 (19.20) 391 194 23 404 183 26 
    Cases CN (%) Cases TN (%) Controls CN (%) Controls TN (%) Cases CC Cases TC Cases TT Controls CC Controls TC Controls TT 
miR-149 rs22928323 (T/C) Xiao 2015 No 183 (49.20) 189 (50.80) 172 (71.67) 68 (28.33) 44 95 47 74 24 22 
    Cases CN (%) Cases TN (%) Controls CN (%) Controls TN (%) Cases CC Cases TC Cases TT Controls CC Controls TC Controls TT 
miR-149 rs22928323 (T/C) Xiao 2015 No 183 (49.20) 189 (50.80) 172 (71.67) 68 (28.33) 44 95 47 74 24 22 

Quantitative data synthesis

We only performed quantitative data synthesis on studies conforming to HWE expectations. Therefore, our study carried out meta-analyses on the inclusion studies of miR-146A rs2910164 (G/C) and miR-499 rs3746444 (T/C), respectively. In addition, we conducted subgroup analyses of the inclusion of miR-146a rs2910164 (G/C), miR-499 rs3746444 (T/C) in accordance with the prior plan. When heterogeneity existed, the REM was applied to calculate the summary ORs in genetic model (Supplementry Table S2). The results of meta-analyses have been summarized in Table 3.

Table 3
Summary of overall results and subgroup for the association between the microRNAs genes polymorphisms and arthritis risk
Gene Groups Subgroups Number Sample size (nAllelic model Homozygote model Heterozygous model Recessive model Dominant model 
    Case Control OR (95% CI) POR PORcorr OR (95% CI) POR PORcorr  OR (95% CI) POR PORcorr  OR (95% CI) POR PORcorr OR (95% CI) POR PORcor  
miR-146a rs2910164 (G/C) Diseases                    
 RA  10 2101 2638 1.026 (0.941, 1.118) 0.562 0.562 1.056 (0.874, 1.277) 0.573 1.146 1.018 (0.887, 1.168) 0.803 4.015 1.043 (0.900, 1.210) 0.574 1.722 1.026 (0.900, 1.169) 0.702 2.808 
  Female 644 828 1.050 (0.905, 1.220) 0.518 2.072 1.143 (0.846, 1.544) 0.384 1.152 1.183 (0.887, 1.578) 0.253 0.253 1.006 (0.810, 1.250) 0.955 4.775 1.164 (0.889, 1.525) 0.270 0.540 
  Ethnicity 
  Caucasian 1172 1357 1.089 (0.898, 1.321) 0.385 0.385 1.094 (0.819, 1.461) 0.543 1.629 1.024 (0.866, 1.211) 0.784 3.920 1.104 (0.842, 1.448) 0.474 0.948 1.069 (0.848, 1.349) 0.572 2.288 
  Asian 929 1281 1.013 (0.897, 1.144) 0.835 1.670 1.028 (0.800, 1.322) 0.828 0.828 1.005 (0.791, 1.278) 0.965 4.825 1.018 (0.853, 1.216) 0.840 2.520 1.015 (0.809, 1.272) 0.898 3.592 
  Control source 
  PB 1380 1597 1.066 (0.907, 1.252) 0.438 0.438 1.082 (0.834, 1.403) 0.553 1.106 1.032 (0.878, 1.213) 0.700 2.800 1.043 (0.836, 1.300) 0.711 3.555 1.036 (0.888, 1.207) 0.655 1.965 
  HB 721 1041 1.020 (0.890, 1.169) 0.772 1.544 1.027 (0.778, 1.356) 0.849 2.547 0.980 (0.753, 1.275) 0.880 3.520 1.044 (0.854, 1.276) 0.673 0.673 1.001 (0.781, 1.282) 0.997 4.985 
  Quality score 
  ≤7 points 627 726 0.886 (0.750, 1.046) 0.154 0.154 0.792 (0.536, 1.170) 0.242 0.726 0.876 (0.697, 1.101) 0.257 1.028 0.845 (0.582, 1.227) 0.375 1.875 0.861 (0.692, 1.071) 0.178 0.356 
  >7 points 2692 3547 1.083 (0.979, 1.198) 0.123 0.123 1.155 (0.929, 1.435) 0.195 0.585 1.108 (0.933, 1.316) 0.244 0.976 1.086 (0.923, 1.276) 0.320 1.600 1.132 (0.962, 1.332) 0.137 0.274 
 PsA Mixture 145 166 0.680 (0.478, 0.967) 0.032 0.096 0.535 (0.220, 1.300) 0.167 0.668 0.567 (0.351, 0.919) 0.021 0.042 0.709 (0.302, 1.665) 0.429 2.145 0.570 (0.359, 0.905) 0.017 0.017 
 JRA Mixture 360 747 0.974 (0.804, 1.181) 0.792 3.960 0.721 (0.332, 1.567) 0.409 1.227 1.179 (0.898, 1.547) 0.236 0.236 0.675 (0.331, 1.379) 0.281 0.562 1.080 (0.838, 1.392) 0.554 2.216 
 AS Asian 713 722 1.307 (0.736, 2.319) 0.361 1.444 1.795 (0.592, 5.445) 0.301 0.903 1.378 (1.024, 1.854) 0.034 0.034 1.280 (0.586, 2.797) 0.536 2.680 1.081 (0.924, 1.265) 0.192 0.384 
miR-499 rs3746444 (T/C) Diseases                    
 RA  1581 2169 0.791 (0.651, 0.962) 0.019 0.038 0.585 (0.386, 0.885) 0.011 0.011 0.796 (0.626, 1.013) 0.064 0.320 0.662 (0.444, 0.987) 0.043 0.172 0.771 (0.603, 0.987) 0.039 0.117 
  Female 425 485 0.747 (0.459, 1.216) 0.241 0.723 0.541 (0.260, 1.126) 0.100 0.100 0.742 (0.348, 1.582) 0.440 2.200 0.624 (0.302, 1.289) 0.203 0.406 0.718 (0.358, 1.443) 0.352 1.408 
  Ethnicity 
  Caucasian 781 887 0.656 (0.541, 0.795) 0.000 <0.01 0.418 (0.242, 0.722) 0.002 0.008 0.645 (0.508, 0.820) 0.000 <0.01 0.532 (0.319, 0.885) 0.015 0.075 0.618 (0.490, 0.780) 0.000 <0.01 
  Asian 800 1282 0.962 (0.799, 1.159) 0.686 2.058 0.973 (0.497, 1.904) 0.935 3.740 0.956 (0.773, 1.182) 0.677 1.354 0.974 (0.498, 1.902) 0.938 4.690 0.956 (0.778, 1.175) 0.670 0.670 
  Control source 
  PB 1375 1703 0.747 (0.646, 0.863) 0.000 <0.01 0.514 (0.329, 0.803) 0.003 0.012 0.750 (0.631, 0.892) 0.001 0.003 0.601 (0.329, 0.921) 0.019 0.095 0.730 (0.617, 0.864) 0.000 <0.01 
  HB 206 466 1.174 (0.828, 1.664) 0.369 0.369 1.532 (0.416, 5.642) 0.521 2.084 1.149 (0.773, 1.708) 0.493 1.479 1.484 (0.404, 5.449) 0.552 2.760 1.173 (0.798, 1.726) 0.417 0.834 
  Quality score 
  ≤7 points 412 486 0.823 (0.572, 1.184) 0.294 0.882 0.276 (0.029, 2.666) 0.266 0.266 0.872 (0.591, 1.286) 0.490 2.450 0.281 (0.029, 2.713) 0.273 0.546 0.842 (0.574, 1.235) 0.379 1.516 
  >7 points 1169 1683 0.784 (0.622, 0.988) 0.039 0.078 0.603 (0.395, 0.921) 0.019 0.019 0.779 (0.582, 1.043) 0.094 0.470 0.684 (0.455, 1.029) 0.068 0.272 0.754 (0.560, 1.015) 0.063 0.189 
 AS Asian 102 105 1.299 (0.733, 2.301) 0.370 1.110 0.356 (0.014, 8.869) 0.529 2.645 1.504 (0.800, 2.829) 0.205 0.205 0.321 (0.013, 7.964) 0.488 1.952 1.439 (0.770, 2.690) 0.254 0.508 
Gene Groups Subgroups Number Sample size (nAllelic model Homozygote model Heterozygous model Recessive model Dominant model 
    Case Control OR (95% CI) POR PORcorr OR (95% CI) POR PORcorr  OR (95% CI) POR PORcorr  OR (95% CI) POR PORcorr OR (95% CI) POR PORcor  
miR-146a rs2910164 (G/C) Diseases                    
 RA  10 2101 2638 1.026 (0.941, 1.118) 0.562 0.562 1.056 (0.874, 1.277) 0.573 1.146 1.018 (0.887, 1.168) 0.803 4.015 1.043 (0.900, 1.210) 0.574 1.722 1.026 (0.900, 1.169) 0.702 2.808 
  Female 644 828 1.050 (0.905, 1.220) 0.518 2.072 1.143 (0.846, 1.544) 0.384 1.152 1.183 (0.887, 1.578) 0.253 0.253 1.006 (0.810, 1.250) 0.955 4.775 1.164 (0.889, 1.525) 0.270 0.540 
  Ethnicity 
  Caucasian 1172 1357 1.089 (0.898, 1.321) 0.385 0.385 1.094 (0.819, 1.461) 0.543 1.629 1.024 (0.866, 1.211) 0.784 3.920 1.104 (0.842, 1.448) 0.474 0.948 1.069 (0.848, 1.349) 0.572 2.288 
  Asian 929 1281 1.013 (0.897, 1.144) 0.835 1.670 1.028 (0.800, 1.322) 0.828 0.828 1.005 (0.791, 1.278) 0.965 4.825 1.018 (0.853, 1.216) 0.840 2.520 1.015 (0.809, 1.272) 0.898 3.592 
  Control source 
  PB 1380 1597 1.066 (0.907, 1.252) 0.438 0.438 1.082 (0.834, 1.403) 0.553 1.106 1.032 (0.878, 1.213) 0.700 2.800 1.043 (0.836, 1.300) 0.711 3.555 1.036 (0.888, 1.207) 0.655 1.965 
  HB 721 1041 1.020 (0.890, 1.169) 0.772 1.544 1.027 (0.778, 1.356) 0.849 2.547 0.980 (0.753, 1.275) 0.880 3.520 1.044 (0.854, 1.276) 0.673 0.673 1.001 (0.781, 1.282) 0.997 4.985 
  Quality score 
  ≤7 points 627 726 0.886 (0.750, 1.046) 0.154 0.154 0.792 (0.536, 1.170) 0.242 0.726 0.876 (0.697, 1.101) 0.257 1.028 0.845 (0.582, 1.227) 0.375 1.875 0.861 (0.692, 1.071) 0.178 0.356 
  >7 points 2692 3547 1.083 (0.979, 1.198) 0.123 0.123 1.155 (0.929, 1.435) 0.195 0.585 1.108 (0.933, 1.316) 0.244 0.976 1.086 (0.923, 1.276) 0.320 1.600 1.132 (0.962, 1.332) 0.137 0.274 
 PsA Mixture 145 166 0.680 (0.478, 0.967) 0.032 0.096 0.535 (0.220, 1.300) 0.167 0.668 0.567 (0.351, 0.919) 0.021 0.042 0.709 (0.302, 1.665) 0.429 2.145 0.570 (0.359, 0.905) 0.017 0.017 
 JRA Mixture 360 747 0.974 (0.804, 1.181) 0.792 3.960 0.721 (0.332, 1.567) 0.409 1.227 1.179 (0.898, 1.547) 0.236 0.236 0.675 (0.331, 1.379) 0.281 0.562 1.080 (0.838, 1.392) 0.554 2.216 
 AS Asian 713 722 1.307 (0.736, 2.319) 0.361 1.444 1.795 (0.592, 5.445) 0.301 0.903 1.378 (1.024, 1.854) 0.034 0.034 1.280 (0.586, 2.797) 0.536 2.680 1.081 (0.924, 1.265) 0.192 0.384 
miR-499 rs3746444 (T/C) Diseases                    
 RA  1581 2169 0.791 (0.651, 0.962) 0.019 0.038 0.585 (0.386, 0.885) 0.011 0.011 0.796 (0.626, 1.013) 0.064 0.320 0.662 (0.444, 0.987) 0.043 0.172 0.771 (0.603, 0.987) 0.039 0.117 
  Female 425 485 0.747 (0.459, 1.216) 0.241 0.723 0.541 (0.260, 1.126) 0.100 0.100 0.742 (0.348, 1.582) 0.440 2.200 0.624 (0.302, 1.289) 0.203 0.406 0.718 (0.358, 1.443) 0.352 1.408 
  Ethnicity 
  Caucasian 781 887 0.656 (0.541, 0.795) 0.000 <0.01 0.418 (0.242, 0.722) 0.002 0.008 0.645 (0.508, 0.820) 0.000 <0.01 0.532 (0.319, 0.885) 0.015 0.075 0.618 (0.490, 0.780) 0.000 <0.01 
  Asian 800 1282 0.962 (0.799, 1.159) 0.686 2.058 0.973 (0.497, 1.904) 0.935 3.740 0.956 (0.773, 1.182) 0.677 1.354 0.974 (0.498, 1.902) 0.938 4.690 0.956 (0.778, 1.175) 0.670 0.670 
  Control source 
  PB 1375 1703 0.747 (0.646, 0.863) 0.000 <0.01 0.514 (0.329, 0.803) 0.003 0.012 0.750 (0.631, 0.892) 0.001 0.003 0.601 (0.329, 0.921) 0.019 0.095 0.730 (0.617, 0.864) 0.000 <0.01 
  HB 206 466 1.174 (0.828, 1.664) 0.369 0.369 1.532 (0.416, 5.642) 0.521 2.084 1.149 (0.773, 1.708) 0.493 1.479 1.484 (0.404, 5.449) 0.552 2.760 1.173 (0.798, 1.726) 0.417 0.834 
  Quality score 
  ≤7 points 412 486 0.823 (0.572, 1.184) 0.294 0.882 0.276 (0.029, 2.666) 0.266 0.266 0.872 (0.591, 1.286) 0.490 2.450 0.281 (0.029, 2.713) 0.273 0.546 0.842 (0.574, 1.235) 0.379 1.516 
  >7 points 1169 1683 0.784 (0.622, 0.988) 0.039 0.078 0.603 (0.395, 0.921) 0.019 0.019 0.779 (0.582, 1.043) 0.094 0.470 0.684 (0.455, 1.029) 0.068 0.272 0.754 (0.560, 1.015) 0.063 0.189 
 AS Asian 102 105 1.299 (0.733, 2.301) 0.370 1.110 0.356 (0.014, 8.869) 0.529 2.645 1.504 (0.800, 2.829) 0.205 0.205 0.321 (0.013, 7.964) 0.488 1.952 1.439 (0.770, 2.690) 0.254 0.508 

As the ‘Statistical analysis’ section described, Pcorr value less than 0.05 was considered statistically significant. Abbreviations: miR-146a rs2910164 (G/C), Allelic model (G vs. C); Homozygote model, (GG vs. CC); Heterozygous model, (GG vs. GC); Recessive model, (GC+GG vs. CC); Dominant model, (GG vs. CC+GC); miR-499 rs3746444 (T/C), Allelic model (T vs. C); Homozygote model: (TT vs. CC); Heterozygous model, (TT vs. TC); Recessive model, (TT+TC vs. CC); Dominant model, (TT vs. TC+CC).

Genetic association for miR-146a rs2910164 (G/C)

After excluding a study [31] that did not conform to HWE expectations, we analyzed the association between miR-146a rs2910164 (G/C) polymorphism and the susceptibility to arthritis in 16 studies with a combined number of 3319 cases and 4273 controls. Based on prior planning, our disease-based analyses showed that association of miR-146a rs2910164 (G/C) polymorphism with PSA or AS susceptibility was identified. Specifically, significant associations between miR-146a rs2910164 (G/C) polymorphism and PsA were found in the allelic model (OR = 0.680, 95% CI = 0.478–0.967, P=0.032) (Figure 2), the heterozygous model (OR = 0.567, 95% CI = 0.351–0.919, P=0.021), and the dominant model (OR = 0.570, 95% CI = 0.359–0.905, P=0.017). Corrected P-values for multiple testing remained significant in the heterozygous model and the dominant model. Although there was no statistical association between miR-146a rs2910164 (G/C) polymorphism and PsA in the homozygote model (OR = 0.535, 95% CI = 0.220–1.300, P=0.167) and recessive model (OR = 0.709, 95% CI = 0.302–1.665, P=0.429), a trend of decreased risk could be seen. Only the heterozygous model showed a significant association between the miR-146a rs2910164 (G/C) polymorphism and AS (OR = 1.378, 95% CI = 1.024–1.854, P=0.034) and corrected P-values for multiple testing remained significant. However, there was no significant association between miR-146a rs2910164 (G/C) polymorphism and RA or JRA at any genetic model (Table 3). Additionally, to estimate the heterogeneity in the outcomes and the inference of the studies, we pooled the ORs and 95% CI of RA from further subgroup analyses of female, ethnicity, control source and quality score. Statistical significance was not found in any groups in any model. This further strengthened the result that there was no association between miR-146a rs2910164 (G/C) polymorphism and RA.

Forest plot of arthritis risk associated with miR-146a rs2910164(G/C)polymorphism in allelic model (G versus C) for the analysis by diseases

Figure 2
Forest plot of arthritis risk associated with miR-146a rs2910164(G/C)polymorphism in allelic model (G versus C) for the analysis by diseases
Figure 2
Forest plot of arthritis risk associated with miR-146a rs2910164(G/C)polymorphism in allelic model (G versus C) for the analysis by diseases

Genetic association for miR-499 rs3746444 (T/C)

After excluding two studies [32,41] that did not conform to HWE expectations, the miR-499 rs3746444 (T/C) polymorphism involved eight studies with a combined number of 1683 cases and 2274 controls. Seven studies with a combined number of 1581 cases and 2169 controls evaluated the miR-499 rs3746444 (T/C) polymorphism and its association with RA, while only one study reported the miR-499 rs3746444 (T/C) polymorphism and its association with AS. The results after a multiple testing correction showed that a significant association between miR-499 rs3746444 (T/C) polymorphism and decreased RA risk was seen in two genetic models (allelic model: OR  =  0.791, 95% CI  =  0.651–0.962, P=0.019, Pcorr=0.038 (Figure 3); homozygote model: OR  =  0.585, 95% CI  =  0.386–0.885, P=0.011, Pcorr =0.011). Based on the female, a significant association between miR-499 rs3746444 (T/C) polymorphism and RA was not found under all the genetic models (Table 3). When subgroup was defined by ethnicity, we were surprised to find that, regardless of the models, miR-499 rs3746444 (T/C) polymorphism was significantly associated with RA in Caucasian population, and corrected P-values for multiple testing remained significant in four models (allelic model: OR  =  0.656, 95% CI  =  0.541–0.795, P<0.001, Pcorr<0.01; homozygote model: OR  =  0.418, 95% CI  =  0.242–0.722, P=0.002, Pcorr=0.008; heterozygous model: OR  =  0.645, 95% CI  =  0.508–0.820, P<0.001, Pcorr<0.01; dominant model: OR  =  0.618, 95% CI  =  0.490–0.780, P<0.001, Pcorr<0.01), but not statistically associated with RA in the Asian population in any of the models. When stratified by control source or quality score, six studies reported the miR-499 rs3746444 (T/C) polymorphism and its association with RA in PB group or quality score >7 points group (Table 3). There was a distinctly decreased overall risk of RA under the allelic and genotypic models in PB group, and corrected P-values for multiple testing remained significant in four models (allelic model: OR  =  0.747, 95% CI  =  0.646–0.863, P<0.001, Pcorr<0.01; homozygote model: OR  =  0.514, 95% CI  =  0.329–0.803, P=0.003, Pcorr=0.012; heterozygous model: OR  =  0.750, 95% CI  =  0.631–0.892, P= 0.001, Pcorr=0.003; dominant model: OR  =  0.730, 95% CI  =  0.617–0.864, P<0.001, Pcorr<0.01). Additionally, after a multiple testing miR-499 rs3746444 (T/C) polymorphism was significantly associated with RA in quality score >7 points group at homozygote model (OR  =  0.603, 95% CI  =  0.395–0.921, P=0.019, Pcorr=0.019).

Forest plot of arthritis risk associated with miR-499 rs3746444(T/C)polymorphism in allelic model (T versus C) for the analysis by diseases

Figure 3
Forest plot of arthritis risk associated with miR-499 rs3746444(T/C)polymorphism in allelic model (T versus C) for the analysis by diseases
Figure 3
Forest plot of arthritis risk associated with miR-499 rs3746444(T/C)polymorphism in allelic model (T versus C) for the analysis by diseases

Publication bias

Publication bias was assessed by performing Begg’s funnel plot and Egger’s regression intercept test under all genetic models. Because there are few inclusion studies for other diseases, we actually only conducted publication bias tests on the included studies of the studies of RA. For miR-146a rs2910164 (G/C) and miR-499 rs3746444 (T/C), symmetrical funnel plots were obtained in all the genetic models (Supplementary Figures S1 and S2 showed the result of allelic model). Moreover, the results of Egger’s test (miR-146a rs2910164 (G/C): allelic model: P=0.416, homozygote model: P= 0.387, heterozygous model: P= 0.418, recessive model: P=0.558, dominant model: P= 0.348; miR-499 rs3746444 (T/C): allelic model: P=0.881, homozygote model: P=0.532, heterozygous model: P=0.898, recessive model: P=0.624, dominant model: P=0.853) further provided no evidence of significant publication bias.

Sensitivity analysis

In order to determine the stability of our results, the sensitivity analyses were performed on miR-146a rs2910164 (G/C) and miR-499 rs3746444 (T/C) (Supplementary Figures S3 and S4 showed the result of allelic model). First, the REM was compared with the FEM, and the statistically similar results were acquired under all genetic models. Second, we applied sensitivity analyses by sequentially excluding individual studies to evaluate the influence of individual study on the obtained conclusions. The analyses showed that the conclusions remained unchanged after exclusion of each study, which suggested that all the results were statistically robust.

Discussion

In this systematic review and meta-analysis, we reviewed the available case–control literature on genetic studies of miRNA SNPs in arthritis and conducted independent meta-analyses for the eligible research. The present study included 22 studies involving six SNPs of miRNA: miR-146a rs2910164 (G/C), miR-499 rs3746444 (T/C), miR-196a-2 rs11614913 (C/T), miR-146a rs2431697 (T/C), miR-146a rs57095329 (A/G), miR-149 rs22928323 (T/C), and four arthritis: RA, PsA, JRA, AS. We carried out a meta-analysis on the inclusion studies of miR-146a rs2910164 (G/C), miR-499 rs3746444 (T/C), respectively.

Because there were many types of arthritis and the pathogenesis may not be the same, analyses based on disease were performed to investigate the relationships between genetic polymorphisms and different arthritis. Our results showed that miR-146a rs2910164 (G/C) was not significantly associated with susceptibility to RA, which was consistent with previous meta-analyses [35,45–50]. However, the result was not consistent with the result of functional studies. Previous studies have found that the levels of miR-146a in RA patients are strongly up-regulated in a variety of tissue structures when compared with non-RA populations [15,51–53]. Up-regulation of miR-146a expression may result in prolonged tumor necrosis factor (TNF)-α (one of inflammatory cytokines) production [15]. It is well known that persistent inflammation is one of the characteristics of the pathogenesis of RA [54]. Therefore, the inconsistency between genetic studies and functional studies makes it difficult to judge the relationship between miR-146a and RA. One of the possible reasons for such result is that the pathogenesis of RA is complex and is the result of the interaction of genes, environment and other parties [55]. It is difficult to explain this association in a single genetic study. When our study population focused on females, the results also showed that no significant association was found between miR-146a rs2910164 (G/C) and RA in all genetic models. However, Zhou et al. [35] reported that miR-146a rs2910164 (G/C) polymorphism was associated with RA in female population, with the heterozygote CT having a more severe and more active form of disease compared with other genotypes. In Zhou et al.’s study [35], they found that genotype GG was significantly associated with RA in the female population and negatively correlated with RA in the male population. The reason for this inconsistency was that a study [31] that did not comply with HWN expectations was included in Zhou et al.’s study [35], which was excluded from our meta-analysis. We conducted an additional analysis to incorporate the present study into meta-analysis, and such association was indeed discovered, but there was a large heterogeneity in three genetic models. However, the heterogeneity in our study was small and was an acceptable range. Additionally, miRNA (miR-146a) is encoded on a non-X chromosome [56]. Khalifa et al. [56] reported that no differences were observed in the expression levels of miR-146a between women and men in RA and healthy subjects. This report strengthened the persuasiveness of our results. Therefore, based on the meta-analyses of available evidence, we still believe that miR-146a rs2910164 (G/C) polymorphism and RA have no significant association. In addition, this is the first meta-analysis reporting that association between miR-146a rs2910164 (G/C) and PsA or AS or JRA. Specifically, a significant decreased risk of PsA was observed in heterozygous, dominant comparison. Association between miR-146a rs2910164 (G/C) and AS was statistically different in comparison of heterozygous model. In addition, we found no significant association in all genetic models between miR-146a rs2910164 (G/C) and JRA. However, the studies included in these comparisons were limited and more research are required to increase statistical power and further confirm whether such differences exist. It is worth mentioning that in addition to considering the changes in the results of statistical power, we should also understand that although RA, PsA, AS or JRA are inflammatory arthritis, their pathogenesis is not completely consistent, and after mutation, the process of regulation in the progression of the disease that miRNA participates may be different, which may therefore produce different results.

Previous studies have shown that miR-499 can regulate the production of anti-cyclic citrullinated peptide antibodies by regulating the expression of its target gene (PADI4 gene) [57], thereby affecting the production of C-reactive protein and inflammation in RA [40]. In the meta-analyses reported here, we found that in the overall populations there was association between miR-499 rs3746444 (T/C) and RA susceptibility in allelic model and homozygote model, respectively, which can reflect the results of functional studies [57]. And the results are similar to early meta-analyses [46,48,49,58], but is not consistant with Yang et al. [42]. The reason for the inconsistency may be that only one study was statistically significant in the Yang et al.’s inclusion studies and the sample size was small, which have increased the probability of larger P-values and wider CIs. Further subgroup analyses showed there was significant association detected in four genetic models (allelic model, homozygote model, heterozygous model, dominant model) among Caucasians, while no significant associations were found in all genetic models among Asians, which was similar to previous meta-analyses [42,46,48,58], suggesting miR-499 rs3746444 (T/C) was associated with RA in Caucasians, but not associated in Asians. In addition, statistical significance was detected in the same four models comparisons in PB group, which makes our results consistent and robust. In >7 points group, miR-499 rs3746444 (T/C) was associated with RA susceptibility in homozygote model, and a trend of decreased susceptibility of RA still existed in other the genetic models. Therefore, the present study suggested that miR-499 rs3746444 (T/C) is one of various microRNAs gene polymorphism, which is an independent factor associated with RA. Thus, small variation in miR-499 rs3746444 may have a meaningful effect on the progression of RA’s autoimmune inflammation and lead to functional consequences.

The present study has several limitations. First, the studies included in the present study were not always high quality, but with subgroup analysis based on quality scores, the results of high quality were almost always consistent with the results of ungrouped studies. Second, the present study divided the race into Caucasian and Asian populations, which may lead to selection bias. Third, we did not analyze factors such as environmental variables, gene×gene and gene×environment interactions due to lack of data. Finally, including studies of sample size in the meta-analysis were relatively small and, as such, our analysis may have been underpowered. However, compared with the previously published systematic reviews, we searched the databases more comprehensively and evaluated the quality of the literature. The diseases included were not limited to single disease such as RA. And to show the robustness of the conclusions, we performed multiple testing corrections technique for P-value estimation. In addition, this article not only updates the literature on the relationship between miR 146a rs2910164 (G/C) or miR 499 rs3746444 (T/C) polymorphisms and RA. In addition, this is the first meta-analysis to report the association between miR-146a rs2910164 (G/C) and PsA or AS or JRA. Therefore, this article can further enhance our understanding of the relationship between microRNAs gene polymorphism and arthritis.

Conclusions

In this meta-analysis of case–control studies, the association of miR-146a rs2910164 (G/C) with RA was not found. And there was a significant association between miR-146a rs2910164(G/C) and PsA or AS. We also found that miR-499 rs3746444 (T/C) was associated with RA, especially in Caucasian populations. Additionally, our results did not support the genetic association between miR-146a rs2910164 (G/C) and JRA susceptibility.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Author Contribution

Yingqi Xiao contributed to the paper’s conception, design, data acquisition, data analysis, and interpretation; drafted and critically revised the manuscript; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Hui Liu contributed to the paper’s conception, design, data acquisition, and interpretation; critically revised the manuscript; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Li Chen contributed to the paper’s conception, design, data acquisition, and interpretation; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Yang Wang contributed to data acquisition and analysis; critically revised the manuscript; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Xiang Yao contributed to data acquisition and analysis; critically revised the manuscript; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Xiaolian Jiang contributed to conception, design, and interpretation; drafted and critically the revised manuscript; gave final approval; and agrees to be held accountable for all aspects of the work, ensuring integrity and accuracy. Manuscript is approved by all authors for publication. All authors declare that the article has not been published previously.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Abbreviations

     
  • AS

    ankylosing spondylitis

  •  
  • CI

    confidence interval

  •  
  • FEM

    fixed-effects model

  •  
  • HWE

    Hardy–Weinberg equilibrium

  •  
  • JRA

    juvenile rheumatoid arthritis

  •  
  • miRNA

    microRNA

  •  
  • NOS

    Newcastle–Ottawa Scale

  •  
  • OR

    odds ratio

  •  
  • PB

    population-based

  •  
  • PsA

    psoriatic arthritis

  •  
  • RA

    rheumatoid arthritis

  •  
  • REM

    random-effects model

  •  
  • SNP

    single nucleotide polymorphism

References

References
1.
(
2018
)
Mesh: Arthritis[DB/OL]. National Center for Biotechnology Information, U.S. National Library of Medicine
.
2.
Drossaers-Bakker
K.W.
,
De Buck
M.
,
Van Zeben
D.
,
Zwinderman
A.H.
,
Breedveld
F.C.
and
Hazes
J.M.W.
(
1999
)
Long-term course and outcome of functional capacity in rheumatoid arthritis-The effect of disease activity and radiologic damage over time
.
Arthritis Rheumatol.
42
,
1854
1860
3.
Minnock
P.
,
FitzGerald
O.
and
Bresnihan
B.
(
2003
)
Women with established rheumatoid arthritis perceive pain as the predominant impairment of health status
.
Rheumatology
42
,
995
1000
[PubMed]
4.
Hootman
J.M.
,
Helmick
C.G.
,
Barbour
K.E.
,
Theis
K.A.
and
Boring
M.A.
(
2016
)
Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015-2040
.
Arthritis Rheumatol.
68
,
1582
1587
[PubMed]
5.
Yelin
E.
,
Weinstein
S.
and
King
T.
(
2016
)
The burden of musculoskeletal diseases in the United States
.
Semin. Arthritis Rheum.
46
,
259
260
[PubMed]
6.
Roth
J.
,
Linge
M.
,
Tzaribachev
N.
,
Schweizer
R.
and
Kuemmerle-Deschner
J.
(
2007
)
Musculoskeletal abnormalities in juvenile idiopathic arthritis-a 4-year longitudinal study
.
Rheumatology
46
,
1180
1184
[PubMed]
7.
Perricone
C.
,
Ceccarelli
F.
and
Valesini
G.
(
2011
)
An overview on the genetic of rheumatoid arthritis: a never-ending story
.
Autoimmun. Rev.
10
,
599
608
[PubMed]
8.
Xu
H.Y.
,
Wang
Z.Y.
,
Chen
J.F.
,
Wang
T.Y.
,
Wang
L.L.
,
Tang
L.L.
et al.
(
2015
)
Association between ankylosing spondylitis and the miR-146a and miR-499 polymorphisms
.
PLoS ONE
10
,
e0122055
[PubMed]
9.
Ma
X.P.
,
Zhang
T.
,
Peng
B.
,
Yu
L.
and
Jiang
D.K.
(
2013
)
Association between microRNA polymorphisms and cancer risk based on the findings of 66 case-control studies
.
PLoS ONE
8
,
e79584
[PubMed]
10.
Ha
M.
and
Kim
V.N.
(
2014
)
Regulation of microRNA biogenesis
.
Nat. Rev. Mol. Cell. Bio.
15
,
509
11.
Qu
Z.
,
Li
W.
and
Fu
B.
(
2014
)
MicroRNAs in autoimmune diseases
.
Biomed. Res. Int.
2014
,
527895
[PubMed]
12.
Velu
V.K.
,
Ramesh
R.
and
Srinivasan
A.R.
(
2012
)
Circulating MicroRNAs as biomarkers in health and disease
.
J. Clin. Diagn. Res.
6
,
1791
1795
[PubMed]
13.
Tsitsiou
E.
and
Lindsay
M.A.
(
2009
)
microRNAs and the immune response
.
Curr. Opin. Pharmacol.
9
,
514
520
[PubMed]
14.
Lu
L.F.
and
Liston
A.
(
2009
)
MicroRNA in the immune system, microRNA as an immune system
.
Immunology
127
,
291
298
[PubMed]
15.
Pauley
K.M.
,
Satoh
M.
,
Chan
A.L.
,
Bubb
M.R.
,
Reeves
W.H.
and
Chan
E.K.
(
2008
)
Upregulated miR‐146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
.
Arthritis Res. Ther.
10
,
R101
[PubMed]
16.
Li
J.Y.
,
Wan
Y.
,
Guo
Q.Y.
,
Zou
L.Y.
,
Zhang
J.Y.
,
Fang
Y.F.
et al.
(
2010
)
Altered microRNA expression profile with miR‐146a upregulation in CD4+ T cells from patients with rheumatoid arthritis
.
Arthritis Res. Ther.
12
,
R81
[PubMed]
17.
Ryan
B.M.
,
Robles
A.I.
and
Harris
C.C.
(
2010
)
Genetic variation in microRNA networks: the implications for cancer research
.
Nat. Rev. Cancer
10
,
389
402
[PubMed]
18.
Zwiers
A.
,
Kraal
L.
,
van de Pouw Kraan
T.C.
,
Wurdinger
T.
,
Bouma
G.
and
Kraal
G.
(
2012
)
Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production
.
J. Immunol.
188
,
1573
[PubMed]
19.
Löfgren
S.E.
,
Frostegård
J.
,
Truedsson
L.
,
Pons-Estel
B.A.
,
D’Alfonso
S.
,
Witte
T.
et al.
(
2012
)
Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene
.
Genes Immun.
13
,
268
274
[PubMed]
20.
Pulikkan
J.A.
,
Dengler
V.
,
Peramangalam
P.S.
,
Peer Zada
A.A.
,
Müller-Tidow
C.
,
Bohlander
S.K.
et al.
(
2010
)
Cell‐cycle regulator E2F1 and microRNA‐223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia
.
Blood
115
,
1768
1778
[PubMed]
21.
Li
C.Z.
,
Fu
W.J.
,
Zhang
Y.
,
Zhou
L.
,
Mao
Z.
,
Lv
W.
et al.
(
2015
)
Meta-analysis of microRNA-146a rs2910164 G>C polymorphism association with autoimmune diseases susceptibility, an update based on 24 studies
.
PLoS ONE
10
,
e0121918
[PubMed]
22.
Jazdzewski
K.
,
Murray
E.L.
,
Franssila
K.
,
Jarzab
B.
,
Schoenberg
D.R.
and
de la Chapelle
A.
(
2008
)
Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma
.
Proc. Natl. Acad. Sci. U.S.A.
105
,
7269
7274
23.
Hassine
H.B.
,
Boumiza
A.
,
Sghiri
R.
,
Baccouche
K.
,
Boussaid
I.
,
Atig
A.
et al.
(
2017
)
Micro RNA-146a but not IRAK1 is associated with rheumatoid arthritis in the Tunisian population
.
Genet. Test. Mol. Biomarkers
21
,
92
96
[PubMed]
24.
Alemán-Ávila
I.
,
Jiménez-Morales
M.
,
Beltrán-Ramírez
O.
,
Barbosa-Cobos
R.E.
,
Jiménez-Morales
S.
,
Sánchez-Muñoz
F.
et al.
(
2017
)
Functional polymorphisms in pre-miR146a and pre-miR499 are associated with systemic lupus erythematosus but not with rheumatoid arthritis or Graves’ disease in Mexican patients
.
Oncotarget
8
,
91876
91886
[PubMed]
25.
Ayeldeen
G.
,
Nassar
Y.
,
Ahmed
H.
,
Shaker
O.
and
Gheita
T.
(
2018
)
Possible use of miRNAs-146a and -499 expression and their polymorphisms as diagnostic markers for rheumatoid arthritis
.
Mol. Cell. Biochem.
449
,
145
156
[PubMed]
26.
Maharaj
A.B.
,
Naidoo
P.
,
Ghazi
T.
,
Abdul
N.S.
,
Dhani
S.
,
Docrat
T.F.
et al.
(
2018
)
MiR-146a G/C rs2910164 variation in South African Indian and Caucasian patients with psoriatic arthritis
.
BMC Med. Genet.
19
,
48
[PubMed]
27.
Holland
B.S.
and
Copenhaver
D.P.
(
1987
)
An improved sequentially rejective Bonferroni procedure
.
Biometrics
43
,
417
423
28.
Bogunia-Kubik
K.
,
Wysoczańska
B.
,
Piątek
D.
,
Iwaszko
M.
,
Ciechomska
M.
and
Świerkot
J.
(
2016
)
Significance of polymorphism and expression of miR-146a and NFkB1 genetic variants in patients with rheumatoid arthritis
.
Arch. Immunol. Ther. Exp.
64
,
131
136
[PubMed]
29.
Chatzikyriakidou
A.
,
Voulgari
P.V.
,
Georgiou
I.
and
Drosos
A.A.
(
2010
)
A polymorphism in the 3′-UTR of interleukin-1 receptor-associated kinase (IRAK1), a target gene of miR-146a, is associated with rheumatoid arthritis susceptibility
.
Joint Bone Spine
77
,
411
413
[PubMed]
30.
Ciccacci
C.
,
Conigliaro
P.
,
Perricone
C.
,
Rufini
S.
,
Triggianese
P.
,
Politi
C.
et al.
(
2016
)
Polymorphisms in STAT-4, IL-10, PSORS1C1, PTPN2 and MIR146A genes are associated differently with prognostic factors in Italian patients affected by rheumatoid arthritis
.
Clin. Exp. Immunol.
186
,
157
163
[PubMed]
31.
El-Shal
A.S.
,
Aly
N.M.
,
Galil
S.M.
,
Moustafa
M.A.
and
Kandel
W.A.
(
2013
)
Association of microRNAs genes polymorphisms with rheumatoid arthritis in Egyptian female patients
.
Joint Bone Spine
80
,
626
631
[PubMed]
32.
Hashemi
M.
,
Eskandari-Nasab
E.
,
Zakeri
Z.
,
Atabaki
M.
,
Bahari
G.
,
Jahantigh
M.
et al.
(
2013
)
Association of pre-miRNA-146a rs2910164 and pre-miRNA-499 rs3746444 polymorphisms and susceptibility to rheumatoid arthritis
.
Mol. Med. Rep.
7
,
287
291
[PubMed]
33.
Qian
L.
,
Gao
D.W.
,
Wang
G.S.
,
Li
X.P.
,
Li
X.M.
,
Chen
J.
et al.
(
2012
)
Relationship between the single nucleotide polymorphisims in pre-miR-146a rs2910164 and expression of miR-146a in rheumatoid arthritis
.
Chin. J. Microbiol. Immunol.
32
,
253
257
34.
Yang
B.
,
Zhang
J.L.
,
Shi
Y.Y.
,
Li
D.D.
,
Chen
J.
,
Huang
Z.C.
et al.
(
2011
)
Association study of single nucleotide polymorphisms in pre-miRNA and rheumatoid arthritis in a Han Chinese population
.
Mol. Biol. Rep.
38
,
4913
4919
[PubMed]
35.
Zhou
X.
,
Zhu
J.
,
Zhang
H.
,
Zhou
G.
,
Huang
Y.
and
Liu
R.
(
2015
)
Is the microRNA-146a (rs2910164) polymorphism associated with rheumatoid arthritis? Association of microRNA-146a (rs2910164) polymorphism and rheumatoid arthritis could depend on gender
.
Joint Bone Spine
82
,
166
171
[PubMed]
36.
Chatzikyriakidou
A.
,
Voulgari
P.V.
,
Georgiou
I.
and
Drosos
A.A.
(
2010
)
The role of microRNA-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility
.
Scand. J. Immunol.
71
,
382
385
[PubMed]
37.
Jiménez-Morales
S.
,
Gamboa-Becerra
R.
,
Baca
V.
,
Del Río-Navarro
B.E.
,
López-Ley
D.Y.
,
Velázquez-Cruz
R.
et al.
(
2012
)
MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients
.
Tissue Antigens
80
,
317
321
[PubMed]
38.
Singh
S.
,
Rai
G.
and
Aggarwal
A.
(
2014
)
Association of microRNA-146a and its target gene IRAK1 polymorphism with enthesitis related arthritis category of juvenile idiopathic arthritis
.
Rheumatol. Int.
34
,
1395
1400
[PubMed]
39.
Niu
Z.
,
Wang
J.
,
Zou
H.
,
Yang
C.
,
Huang
W.
and
Jin
L.
(
2015
)
Common MIR146A polymorphisms in chinese ankylosing spondylitis subjects and controls
.
PLoS ONE
10
,
e0137770
[PubMed]
40.
Fattah
S.A.
,
Ghattas
M.H.
,
Saleh
S.M.
and
Abo-Elmatty
D.M.
(
2018
)
Pre-micro RNA-499 gene polymorphism rs3746444 T/C is associated with susceptibility to rheumatoid arthritis in Egyptian population
.
Indian J. Clin. Biochem.
33
,
96
101
[PubMed]
41.
Toraih
E.A.
,
Ismail
N.M.
,
Toraih
A.A.
,
Hussein
M.H.
and
Fawzy
M.S.
(
2016
)
Precursor miR-499a variant but not miR-196a2 is associated with rheumatoid arthritis susceptibility in an Egyptian population
.
Mol. Diagn. Ther.
20
,
279
295
[PubMed]
42.
Yang
X.K.
,
Li
P.
,
Zhang
C.
,
Leng
R.X.
,
Li
S.
,
Liu
J.
et al.
(
2017
)
Association between IRAK1 rs3027898 and miRNA-499 rs3746444 polymorphisms and rheumatoid arthritis: a case control study and meta-analysis
.
Z. Rheumatol.
76
,
622
629
[PubMed]
43.
Zhang
H.
,
Pu
J.
,
Wang
X.
,
Shen
L.
,
Zhao
G.
,
Zhuang
C.
et al.
(
2013
)
IRAK1 rs3027898 C/A polymorphism is associated with risk of rheumatoid arthritis
.
Rheumatol. Int.
33
,
369
375
[PubMed]
44.
Xiao
M.Y.
,
Ma
Y.
,
Chen
X.G.
and
Kuang
B.H.
(
2015
)
Single nucleotide polymorphism of miR-149 and susceptibility of rheumatoid arthritis
.
J. Cent. South Univ. (Med. Sci.)
40
,
495
498
45.
Chen
H.F.
,
Hu
T.T.
,
Zheng
X.Y.
,
Li
M.Q.
,
Luo
M.H.
,
Yao
Y.X.
et al.
(
2013
)
Association between miR-146a rs2910164 polymorphism and autoimmune diseases susceptibility: a meta-analysis
.
Gene
521
,
259
264
[PubMed]
46.
Fu
L.
,
Jin
L.
,
Yan
L.
,
Shi
J.
,
Wang
H.
,
Zhou
B.
et al.
(
2016
)
Comprehensive review of genetic association studies and meta-analysis on miRNA polymorphisms and rheumatoid arthritis and systemic lupus erythematosus susceptibility
.
Hum. Immunol.
77
,
1
6
[PubMed]
47.
Lee
Y.H.
and
Bae
S.C.
(
2015
)
The miR-146a polymorphism and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis
.
Z. Rheumatol.
74
,
153
156
[PubMed]
48.
Li
K.
,
Tie
H.
,
Hu
N.
,
Chen
H.
,
Yin
X.
,
Peng
C.
et al.
(
2014
)
Association of two polymorphisms rs2910164 in miRNA-146a and rs3746444 in miRNA-499 with rheumatoid arthritis: a meta-analysis
.
Hum. Immunol.
75
,
602
608
[PubMed]
49.
Song
G.G.
,
Bae
S.C.
,
Seo
Y.H.
,
Kim
J.H.
,
Choi
S.J.
,
Ji
J.D.
et al.
(
2015
)
The association between susceptibility to inflammatory arthritis and miR-146a, miR-499 and IRAK1 polymorphisms: a meta-analysis
.
Z. Rheumatol.
74
,
637
645
[PubMed]
50.
Yang
Y.
,
Zhang
K.
and
Zhou
R.
(
2014
)
Meta-analysis of pre-miRNA polymorphisms association with susceptibility to autoimmune diseases
.
Immunol. Invest.
43
,
13
27
[PubMed]
51.
Nakasa
T.
,
Miyaki
S.
,
Okubo
A.
,
Hashimoto
M.
,
Nishida
K.
,
Ochi
M.
et al.
(
2008
)
Expression of microRNA‐146 in rheumatoid arthritis synovial tissue
.
Arthritis Rheum.
58
,
1284
1292
[PubMed]
52.
Stanczyk
J.
,
Pedrioli
D.M.
,
Brentano
F.
,
Sanchez-Pernaute
O.
,
Kolling
C.
,
Gay
R.E.
et al.
(
2008
)
Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis
.
Arthritis Rheum.
58
,
1001
1009
[PubMed]
53.
Niimoto
T.
,
Nakasa
T.
,
Ishikawa
M.
,
Okuhara
A.
,
Izumi
B.
,
Deie
M.
et al.
(
2010
)
MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients
.
BMC Musculoskelet. Disord.
11
,
209
[PubMed]
54.
Miao
C.G.
,
Yang
Y.Y.
,
He
X.
,
Xu
T.
,
Huang
C.
,
Huang
Y.
et al.
(
2013
)
New advances of microRNAs in the pathogenesis of rheumatoid arthritis, with a focus on the crosstalk between DNA methylation and the microRNA machinery
.
Cell. Signal.
25
,
1118
1125
[PubMed]
55.
Dieudé
P.
(
2009
)
Rheumatic diseases: environment and genetics
.
Joint Bone Spine
76
,
602
607
[PubMed]
56.
Khalifa
O.
,
Pers
Y.M.
,
Ferreira
R.
,
Sénéchal
A.
,
Jorgensen
C.
,
Apparailly
F.
et al.
(
2016
)
X-linked miRNAs associated with gender differences in rheumatoid arthritis
.
Int. J. Mol. Sci.
17
,
1852
57.
Schellekens
G.A.
,
Visser
H.
,
de Jong
B.A.
,
van den Hoogen
F.H.
,
Hazes
J.M.
,
Breedveld
F.C.
et al.
(
2000
)
The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide
.
Arthritis Rheum.
43
,
155
163
[PubMed]
58.
Lu
L.
,
Tu
Y.
,
Liu
L.
,
Qi
J.
and
He
L.
(
2014
)
MicroRNA-499 rs3746444 polymorphism and autoimmune diseases risk: a meta-analysis
.
Mol. Diagn. Ther.
18
,
237
242
[PubMed]
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).