Background: Bronchiectasis is a multidimensional lung disease characterized by bronchial dilation, chronic inflammation, and infection. The FACED (Forced expiratory volume in 1 s (FEV1), Age, Chronic colonization, Extension, and Dyspnea) score and Bronchiectasis Severity Index (BSI) are used to stratify disease risk and guide clinical practice. This meta-analysis aimed to quantify the accuracy of these two systems for predicting bronchiectasis outcomes.

Methods: PubMed, Embase, and the Cochrane Database of Systematic Reviews were searched for relevant studies. Quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria. Pooled summary estimates, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated. Summary receiver operating characteristic curves were constructed, and the area under the curve (AUC) was used to evaluate prognostic performance.

Results: We analyzed 17 unique cohorts (6525 participants) from ten studies. FACED scores with a cut-off value ≥ 5 predicted all-cause mortality better than BSI with a cut-off value ≥ 9, based on pooled sensitivity (0.34 vs 0.7), specificity (0.94 vs 0.66), PLR (4.76 vs 2.05), NLR (0.74 vs 0.48), DOR (6.67 vs 5.01), and AUC (0.87 vs 0.75). Both FACED scores with a cut-off value ≥ 5 (AUC = 0.82) and BSI scores with a cut-off value ≥ 5 or 9 (both AUC = 0.80) help to predict hospitalization.

Conclusions: At a cut-off value ≥ 5, FACED scores can reliably predict all-cause mortality and hospitalization, while BSI scores can reliably predict hospitalization with a cut-off of ≥5 or ≥9. Further studies are essential to validate the prognostic performance of these two scores.

Bronchiectasis is a chronic inflammatory and structural lung disease characterized by chronic dilation of the bronchi; clinical symptoms of the disease include persistent cough, sputum production, and recurrent respiratory infections [1,2]. In recent years, bronchiectasis has become a major health concern due to its increasing prevalence and associated healthcare costs [1–4].

Due to the lack of effective treatment options, the current management strategies for bronchiectasis focus on controlling symptoms, reducing risk, avoiding exacerbation, and slowing disease progression [1,2]. Most recommended first-line treatments for bronchiectasis are long-term antimicrobial therapies, which are costly and can cause adverse events [1,2]. Thus, the first step in clinical decision-making should be stratifying bronchiectasis patients by risk of poor prognosis in order to target treatments to those most likely to experience a net benefit. Furthermore, clearly defined stratification of bronchiectasis patients would improve the comparability of populations analyzed in different research studies [5].

Three multidimensional severity scoring systems have been derived and validated for bronchiectasis: FACED, so named because it takes into account Forced expiratory volume in 1 s (FEV1), Age, Chronic colonization, Extension, and Dyspnea; EFACED (with Exacerbation added to FACED); and the Bronchiectasis Severity Index (BSI), which involves a 9-item scale encompassing demographic and clinical characteristics, as well as microbiological and radiological data [6,7]. FACED and BSI scores have been more extensively researched and are more widely used [6,7]. The FACED score is an easy-to-use grading system with an excellent predictive performance regarding mortality [7,8]. The BSI was developed and validated in a large multicenter study in Europe [9]. These prognostic scoring systems can help to predict mortality, hospitalization, and disease exacerbation, as well as to evaluate quality of life in patients with bronchiectasis. Although some studies have compared the accuracy of these scoring systems [10,11], whether one is better is unclear. This is an important question to address because some medical centers may lack the clinical experience or equipment to implement all scoring systems well.

Considerable effort needs to be invested to validate the prognostic performance of these scoring systems in varied settings before they can be accepted and extensively applied in research and clinical decision-making. In this meta-analysis, we aimed to quantify and compare the accuracy of the FACED and BSI systems at predicting disease outcomes (all-cause mortality, respiratory-related mortality, or hospitalization) in bronchiectasis patients. As part of the present study, we aimed to determine optimal cut-off values for each system as a basis for standardizing prognostic prediction.

This systematic review and meta-analysis was registered with the PROSPERO database of systematic reviews (CRD42018096462).

Search strategy

Two reviewers (M.H. and M.Z.) independently searched PubMed, Embase, and the Cochrane Database of Systematic Reviews to identify studies on bronchiectasis published before June 2019. The search strings are provided in the Supplementary material (e-Appendix 1). The reference lists in the included studies and in relevant review articles were screened manually.

Study eligibility

After removing duplicate references, two reviewers (M.H. and M.Z.) independently screened the titles and abstracts of the potentially relevant studies, followed by a complete review of each relevant full text. Disagreements were resolved through discussion or consultation with the third author (C.W.). All included studies were written in English or Chinese, with no restrictions on study design. All included studies used the FACED system and/or BSI system to assess bronchiectasis (diagnosed using high-resolution chest computed tomography) and had sufficient data to directly or indirectly assess the predictive performance of the FACED system and/or BSI system regarding at least one outcome of interest (mortality and/or hospitalization).

If a study contained data from several cohorts, each cohort was treated as a separate study, consistent with established practices [12]. If research subjects and reported outcomes overlapped between studies, we combined the data from those studies and analyzed the data based on methods described in a previous study [13].

Data extraction and quality assessment

Two reviewers (M.H. and M.Z.) independently assessed the quality of the included studies using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria [14]. Relevant data were extracted from the included studies using a standardized extraction form.

Statistical analysis

Our analyses focused on the ability of the two scoring systems to predict all-cause mortality, respiratory-related mortality, or hospitalization, and on the agreement between the two scoring systems. Heterogeneity between studies was assessed and quantified using the I2 statistic. Based on the heterogeneity observed, random-effects (I2 > 50%) or fixed-effects (I2 ≤ 50%) models were used to calculate summary estimates, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). We generated summary receiver operating characteristic curves (SROCs) and calculated the area under the SROC (AUC) values. Meta-regression was performed to explore the sources of statistically significant heterogeneity, followed by subgroup analyses. Publication bias was assessed using Deeks’ test. Consensus between the scoring systems was evaluated using the kappa (κ) coefficient and chi-squared test. Statistical analysis was performed using RevMan 5.3 (Cochrane Collaboration), Meta-DiSc 1.4 (XI Cochrane Colloquium, Barcelona, Spain), and Stata 12.0 (Stata, College Station, TX, U.S.A.).

Literature screening and assessment

After a detailed assessment based on the eligibility criteria, the final meta-analysis included 17 unique cohorts with 6525 participants across ten publications (Figure 1) [8–11,15–20]. The characteristics of the included studies are summarized in Table 1. The QUADAS-2 assessment demonstrated that most of the included studies had a low risk of bias, indicating the reliability of the statistical results (Figure 2). For the initial analysis, we stratified the bronchiectasis patients into three groups: mild (BSI score, 0–4; FACED score, 0–2), moderate (BSI, 5–8; FACED, 3–4), or severe (BSI, 9; FACED, 5–7). Patients in these three groups were compared in terms of age, rates of all-cause or respiratory-related mortality, and rate of hospital admission (Table 2).

Flowchart of study selection

Figure 1
Flowchart of study selection
Figure 1
Flowchart of study selection
Close modal

Quality assessment of included studies using the QUADAS-2 criteria

Figure 2
Quality assessment of included studies using the QUADAS-2 criteria
Figure 2
Quality assessment of included studies using the QUADAS-2 criteria
Close modal
Table 1
Characteristics of included studies
Study/yearCountryStudy designSample sizeAge (years)Male (%)BMI (kg/m2)mMRCFEV1, % predictedPseudomonas aeruginosa (%)Number of affected lobesExacerbations (previous year)Follow-up time (years)Mortality (%)Hospitalization (%)Scales
Martínez-García/2014a Spain 397 59.20 ± 17.40 44.30 26.10 ± 4.28 1.57 ± 1.17 68.50 ± 25.60 31.80 2.45 ± 1.12 2.47 ± 2.10 19.90 NA FACED 
Martínez-García/2014b Spain 422 58.30 ± 17.70 42.60 25.35 ± 4.98 1.50 ± 1.15 68.70 (26.30) 31.80 2.59 ± 1.17 2.57 ± 2.30 17.80 NA FACED 
Chalmers/2014 U.K. 608 67 (58–75) 39.97 NA 2 (1, 3) 72.60 ± 25.00 11.51 3.0 ± 1.6 1.7 ± 2.0 10.20 0.08 BSI 
Ellis/2016 U.K. 74 52.50 ± 12.40 NA 23.40 ± 3.90 2.10 ± 0.90 68.80 ± 27.70 22.00 3.40 ± 1.50 4.40 ± 4.40 18.8 35 NA BS FACEDI 
McDonnell/2016a Dundee, U.K. 494 65.30 ± 12.90 39.30 25.90 ± 5.20 2.30 ± 1.10 71.60 ± 24.7 12.80 4.40 ± 3.00 2.10 ± 2.60 8.5 0.05 BSI FACED 
McDonnell/2016b Newcastle, England 126 59.10 ± 14.50 40.5 26.20 ± 5.10 2.50 ± 1.10 64.00 ± 26.90 10.30 2.80 ± 1.40 3.40 ± 1.70 12.7 0.11 BSI FACED 
McDonnell/2016c Belgium 190 66.40 ± 16.00 49 23.90 ± 4.30 2.30 ± 1.20 69.30 ± 25.30 8.40 4.50 ± 1.30 1.90 ± 2.10 23.16 0.06 BSI FACED 
McDonnell/2016d Monza, Italy 250 65.10 ± 12.20 41.2 23.70 ± 4.40 2.00 ± 1.30 79.20 ± 27.50 21.60 5.50 ± 2.70 1.90 ± 2.00 5.60 0.09 BSI FACED 
McDonnell/2016e Galway, Ireland 280 60.50 ± 14.60 32.9 27.10 ± 5.60 2.00 ± 1.00 80.30 ± 25.90 13.90 3.40 ± 3.00 2.90 ± 1.30 15.71 0.03 BSI FACED 
McDonnell/2016f Athens, Greece 159 59.30 ± 16.20 36 24.60 ± 3.40 2.40 ± 1.50 70.10 ± 24.90 36.50 4.80 ± 2.50 2.40 ± 1.50 5.66 0.04 BSI FACED 
McDonnell/2016g Vojvodina, Serbia 113 62.00 ± 13.00 29.2 25.10 ± 4.90 2.50 ± 1.40 64.80 ± 26.20 1.00 4.70 ± 2.40 1.00 ± 1.25 17.70 0.02 BSI FACED 
Athanazio/2017 Latin America 651 48.20 ± 16.00 32.9 22.40 ± 11.50 1.52 ± 1.00 54.70 ± 22.10 39.80 3.30 ± 1.50 1.12 ± 1.40 14.60 0.30 FACED 
Sim/2017 Singapore 96 70 (59.3–77) 37.5 19.20 (15.70–23.10) NA 47.00 (37.00–63.30) NA NA NA 42.70 NA BSI FACED 
Wang/2018 China 596 54.81 ± 13.71 56.88 NA NA NA NA NA NA 7.05 0.06 BSI FACED 
Rosales-Mayor/2017 Spain 182 68.00 ± 14.60 40.10 25.60 ± 4.60 1.30 ± 1.10 70.30 ± 21.80 20.90 3.20 ± 1.60 1.80 ± 1.80 NA 0.27 BSI FACED 
Costa/2018 Portugal 40 65.90 ± 14.10 45.00 26.20 ± 5.60 63.40 ± 22.10 12.50 3.60 ± 1.40 1.20 ± 1.50 NA NA NA BSI FACED 
Minov/2015 Macedonia 37 63.40 ± 8.10 80.00 24.30 ± 3.70 1.83 ± 0.63 57.60 ± 8.70 8.10 2. 25 ± 0.78 2.12 ± 0.54 NA NA NA BSI FACED 
Study/yearCountryStudy designSample sizeAge (years)Male (%)BMI (kg/m2)mMRCFEV1, % predictedPseudomonas aeruginosa (%)Number of affected lobesExacerbations (previous year)Follow-up time (years)Mortality (%)Hospitalization (%)Scales
Martínez-García/2014a Spain 397 59.20 ± 17.40 44.30 26.10 ± 4.28 1.57 ± 1.17 68.50 ± 25.60 31.80 2.45 ± 1.12 2.47 ± 2.10 19.90 NA FACED 
Martínez-García/2014b Spain 422 58.30 ± 17.70 42.60 25.35 ± 4.98 1.50 ± 1.15 68.70 (26.30) 31.80 2.59 ± 1.17 2.57 ± 2.30 17.80 NA FACED 
Chalmers/2014 U.K. 608 67 (58–75) 39.97 NA 2 (1, 3) 72.60 ± 25.00 11.51 3.0 ± 1.6 1.7 ± 2.0 10.20 0.08 BSI 
Ellis/2016 U.K. 74 52.50 ± 12.40 NA 23.40 ± 3.90 2.10 ± 0.90 68.80 ± 27.70 22.00 3.40 ± 1.50 4.40 ± 4.40 18.8 35 NA BS FACEDI 
McDonnell/2016a Dundee, U.K. 494 65.30 ± 12.90 39.30 25.90 ± 5.20 2.30 ± 1.10 71.60 ± 24.7 12.80 4.40 ± 3.00 2.10 ± 2.60 8.5 0.05 BSI FACED 
McDonnell/2016b Newcastle, England 126 59.10 ± 14.50 40.5 26.20 ± 5.10 2.50 ± 1.10 64.00 ± 26.90 10.30 2.80 ± 1.40 3.40 ± 1.70 12.7 0.11 BSI FACED 
McDonnell/2016c Belgium 190 66.40 ± 16.00 49 23.90 ± 4.30 2.30 ± 1.20 69.30 ± 25.30 8.40 4.50 ± 1.30 1.90 ± 2.10 23.16 0.06 BSI FACED 
McDonnell/2016d Monza, Italy 250 65.10 ± 12.20 41.2 23.70 ± 4.40 2.00 ± 1.30 79.20 ± 27.50 21.60 5.50 ± 2.70 1.90 ± 2.00 5.60 0.09 BSI FACED 
McDonnell/2016e Galway, Ireland 280 60.50 ± 14.60 32.9 27.10 ± 5.60 2.00 ± 1.00 80.30 ± 25.90 13.90 3.40 ± 3.00 2.90 ± 1.30 15.71 0.03 BSI FACED 
McDonnell/2016f Athens, Greece 159 59.30 ± 16.20 36 24.60 ± 3.40 2.40 ± 1.50 70.10 ± 24.90 36.50 4.80 ± 2.50 2.40 ± 1.50 5.66 0.04 BSI FACED 
McDonnell/2016g Vojvodina, Serbia 113 62.00 ± 13.00 29.2 25.10 ± 4.90 2.50 ± 1.40 64.80 ± 26.20 1.00 4.70 ± 2.40 1.00 ± 1.25 17.70 0.02 BSI FACED 
Athanazio/2017 Latin America 651 48.20 ± 16.00 32.9 22.40 ± 11.50 1.52 ± 1.00 54.70 ± 22.10 39.80 3.30 ± 1.50 1.12 ± 1.40 14.60 0.30 FACED 
Sim/2017 Singapore 96 70 (59.3–77) 37.5 19.20 (15.70–23.10) NA 47.00 (37.00–63.30) NA NA NA 42.70 NA BSI FACED 
Wang/2018 China 596 54.81 ± 13.71 56.88 NA NA NA NA NA NA 7.05 0.06 BSI FACED 
Rosales-Mayor/2017 Spain 182 68.00 ± 14.60 40.10 25.60 ± 4.60 1.30 ± 1.10 70.30 ± 21.80 20.90 3.20 ± 1.60 1.80 ± 1.80 NA 0.27 BSI FACED 
Costa/2018 Portugal 40 65.90 ± 14.10 45.00 26.20 ± 5.60 63.40 ± 22.10 12.50 3.60 ± 1.40 1.20 ± 1.50 NA NA NA BSI FACED 
Minov/2015 Macedonia 37 63.40 ± 8.10 80.00 24.30 ± 3.70 1.83 ± 0.63 57.60 ± 8.70 8.10 2. 25 ± 0.78 2.12 ± 0.54 NA NA NA BSI FACED 

Data are presented as mean ± SD or median (interquartile range). Abbreviations: NA, not available; P, prospective; R, retrospective.

a, b, c etc means different cohorts in one study.

Table 2
The distribution of bronchiectasis patients, number of all-cause and respiratory-cause deaths, and number of hospital admissions in different severity groups stratified by FACED and/or BSI
Study/yearCountryScalesMildModerateSevere
TotalAll-cause mortalityRespiratory-cause mortalityHospitalizationsTotalAll-cause mortalityRespiratory-cause mortalityHospitalizationsTotalAll-cause mortalityRespiratory-cause mortalityHospitalizations
Martínez-García/2014a Spain FACED 234 10 NA 99 25 15 NA 64 44 33 NA 
Miguel/2014b Spain FACED 249 14 NA 105 23 14 NA 68 38 31 NA 
Chalmers/2014 U.K. BSI 191 NA 13 224 13 NA 31 193 44 NA 145 
Ellis/2016 U.K. FACED 49 NA NA 19 13 NA NA NA NA 
  BSI 19 NA NA 32 NA NA 23 13 NA NA 
McDonnell/2016a Dundee, U.K. BSI 136 NA 211 13 NA 24 147 28 NA 75 
  FACED 303 12 NA 44 145 15 NA 45 46 15 NA 13 
McDonnell/2016b Newcastle, England BSI 21 NA 25 NA 80 15 NA 52 
  FACED 91 NA 37 27 NA 15 NA 
McDonnell/2016c Leuven, Belgium BSI 51 NA 63 16 NA 18 76 26 NA 34 
  FACED 100 NA 23 65 19 NA 22 25 16 NA 13 
McDonnell/2016d Monza, Italy BSI 67 NA 10 104 NA 27 79 11 NA 55 
  FACED 135 NA 40 88 NA 34 27 NA 18 
McDonnell/2016e Galway, Ireland BSI 109 NA 92 11 NA 79 25 NA 30 
  FACED 217 23 NA 18 53 19 NA 15 10 NA 
McDonnell/2016f Athens, Greece BSI 36 NA 43 NA 80 NA 27 
  FACED 104 NA 17 35 NA 20 NA 
McDonnell/2016g Vojvodina, Serbia BSI 41 NA 48 12 NA 24 NA 12 
  FACED 60 NA 44 13 NA NA 
Athanazio/2017 Latin America FACED 350 13 231 48 29 33 70 34 27 19 
Sim/2017 Singapore BSI NA NA 19 NA NA 68 36 NA NA 
  FACED 35 11 NA NA 40 21 NA NA 21 NA NA 
Wang/2018 China BSI 46 NA 15 244 NA 57 306 36 NA 105 
  FACED 441 17 NA 123 136 19 NA 48 19 NA 
Rosales-Mayor/2017 Spain BSI 36 NA NA NA 47 NA NA NA 99 NA NA NA 
  FACED 108 NA NA NA 61 NA NA NA 13 NA NA NA 
Costa/2018 Portugal BSI 13 NA NA NA 13 NA NA NA 14 NA NA NA 
  FACED 20 NA NA NA 15 NA NA NA NA NA NA 
Minov/2015 Macedonia BSI 16 NA NA NA 14 NA NA NA NA NA NA 
  FACED 17 NA NA NA 14 NA NA NA NA NA NA 
Study/yearCountryScalesMildModerateSevere
TotalAll-cause mortalityRespiratory-cause mortalityHospitalizationsTotalAll-cause mortalityRespiratory-cause mortalityHospitalizationsTotalAll-cause mortalityRespiratory-cause mortalityHospitalizations
Martínez-García/2014a Spain FACED 234 10 NA 99 25 15 NA 64 44 33 NA 
Miguel/2014b Spain FACED 249 14 NA 105 23 14 NA 68 38 31 NA 
Chalmers/2014 U.K. BSI 191 NA 13 224 13 NA 31 193 44 NA 145 
Ellis/2016 U.K. FACED 49 NA NA 19 13 NA NA NA NA 
  BSI 19 NA NA 32 NA NA 23 13 NA NA 
McDonnell/2016a Dundee, U.K. BSI 136 NA 211 13 NA 24 147 28 NA 75 
  FACED 303 12 NA 44 145 15 NA 45 46 15 NA 13 
McDonnell/2016b Newcastle, England BSI 21 NA 25 NA 80 15 NA 52 
  FACED 91 NA 37 27 NA 15 NA 
McDonnell/2016c Leuven, Belgium BSI 51 NA 63 16 NA 18 76 26 NA 34 
  FACED 100 NA 23 65 19 NA 22 25 16 NA 13 
McDonnell/2016d Monza, Italy BSI 67 NA 10 104 NA 27 79 11 NA 55 
  FACED 135 NA 40 88 NA 34 27 NA 18 
McDonnell/2016e Galway, Ireland BSI 109 NA 92 11 NA 79 25 NA 30 
  FACED 217 23 NA 18 53 19 NA 15 10 NA 
McDonnell/2016f Athens, Greece BSI 36 NA 43 NA 80 NA 27 
  FACED 104 NA 17 35 NA 20 NA 
McDonnell/2016g Vojvodina, Serbia BSI 41 NA 48 12 NA 24 NA 12 
  FACED 60 NA 44 13 NA NA 
Athanazio/2017 Latin America FACED 350 13 231 48 29 33 70 34 27 19 
Sim/2017 Singapore BSI NA NA 19 NA NA 68 36 NA NA 
  FACED 35 11 NA NA 40 21 NA NA 21 NA NA 
Wang/2018 China BSI 46 NA 15 244 NA 57 306 36 NA 105 
  FACED 441 17 NA 123 136 19 NA 48 19 NA 
Rosales-Mayor/2017 Spain BSI 36 NA NA NA 47 NA NA NA 99 NA NA NA 
  FACED 108 NA NA NA 61 NA NA NA 13 NA NA NA 
Costa/2018 Portugal BSI 13 NA NA NA 13 NA NA NA 14 NA NA NA 
  FACED 20 NA NA NA 15 NA NA NA NA NA NA 
Minov/2015 Macedonia BSI 16 NA NA NA 14 NA NA NA NA NA NA 
  FACED 17 NA NA NA 14 NA NA NA NA NA NA 

Abbreviation: NA, not available.

a, b, c etc means different cohorts in one study.

Mortality prediction

We evaluated the predictive accuracy regarding all-cause mortality of the FACED system across 13 cohorts (n=3848) [8,10,11,16,17,20], and the corresponding predictive accuracy of the BSI system across 11 cohorts (n=2986) [9,11,16,17,20]. Pooled summary estimates, including sensitivity, specificity, PLR, NLR, DOR, and AUC, were calculated using FACED and BSI scores at various cut-off values (Table 3). The FACED score at a cut-off value ≥ 5 had good predictive accuracy based on the pooled sensitivity (0.34, 95% confidence interval [CI] = 0.3–0.38), specificity (0.94, 95% CI = 0.93–0.95), PLR (4.76, 95% CI = 3.48–6.51), NLR (0.74, 95% CI = 0.62–0.88), and DOR (6.67, 95% CI = 4.25–10.45). The BSI score at a cut-off value ≥ 9 had good predictive accuracy based on the pooled sensitivity (0.70, 95% CI = 0.65–0.75), specificity (0.66, 95% CI = 0.64–0.67), PLR (2.05, 95% CI = 1.78–2.37), NLR (0.48, 95% CI = 0.38–0.61), and DOR (5.01, 95% CI = 3.85–6.53). Based on the AUC values, we found that the FACED score was better at predicting all-cause mortality than the BSI score (0.87 vs 0.75; Figures 3 and 4).

SROC curve of the FACED score for predicting all-cause mortality

Figure 3
SROC curve of the FACED score for predicting all-cause mortality
Figure 3
SROC curve of the FACED score for predicting all-cause mortality
Close modal

SROC curve of the BSI score for predicting all-cause mortality

Figure 4
SROC curve of the BSI score for predicting all-cause mortality
Figure 4
SROC curve of the BSI score for predicting all-cause mortality
Close modal
Table 3
Summary accuracy of FACED score and BSI for predicting mortality and hospitalizations at each cut-off value
OutcomesScaleStudy/participantsSensitivity (95% CI), I2Specificity (95% CI), I2PLR (95% CI), I2NLR (95% CI), I2DOR (95% CI), I2AUC
All-cause mortality FACED        
 ≥3 13/3848 0.76 (0.72–0.80), 72.7% 0.68 (0.66– 0.69), 88.8% 2.31 (2.02– 2.63), 67.5% 0.38 (0.29– 0.49), 66.6% 6.54 (4.71– 9.07), 47.7% 0.77 
 ≥5 13/3848 0.34 (0.30–0.38), 83.0% 0.94 (0.93– 0.95), 74.9% 4.76 (3.48– 6.51), 58.3% 0.74 (0.62– 0.88), 91.7% 6.67 (4.25–10.45), 64.4% 0.87 
 BSI        
 ≥5 11/2986 0.94 (0.91– 0.96), 51.8% 0.27 (0.25–0.29), 94.9% 1.31 (1.18– 1.45), 88.6% 0.29 (0.19– 0.42), 0.0% 5.10 (3.26– 7.98), 0.0% 0.66 
 ≥9 11/2986 0.70 (0.65–0.75), 77.2% 0.66 (0.64–0.67), 93.8% 2.05 (1.78– 2.37), 66.6% 0.48 (0.38– 0.61), 48.1% 5.01 (3.85– 6.53), 0.0% 0.75 
Respiratory-cause mortality FACED        
 ≥3 3/1470 0.91 (0.85– 0.95), 24.4% 0.63 (0.60– 0.65), 76.7% 2.50 (2.07– 3.01), 77.4% 0.16 (0.09– 0.27), 20.2% 16.36 (7.97– 33.58), 37.2% 0.64 
 ≥5 3/1470 0.56 (0.48– 0.63), 71.1% 0.92 (0.90– 0.93), 8.3% 6.42 (5.13– 8.04), 0.0% 0.48 (0.34– 0.67), 70.4% 13.38 (8.80– 20.34), 21.6% 0.93 
Hospitalizations FACED        
 ≥3 9/2859 0.50 (0.46– 0.54), 90.9% 0.67 (0.65– 0.69), 90.5% 1.70 (1.38– 2.10), 78.6% 0.67 (0.54– 0.84), 79.4% 2.71 (1.79– 4.09), 71.6% 0.69 
 ≥5 9/2859 0.14 (0.12– 0.17), 83.0% 0.94 (0.92– 0.95), 72.9% 2.60 (1.84– 3.69), 37.7% 0.89 (0.82– 0.97), 82.3% 2.95 (1.93– 4.49), 41.5% 0.82 
 BSI        
 ≥5 9/2816 0.94 (0.92– 0.95), 57.4% 0.32 (0.30– 0.34), 95.9% 1.43 (1.21– 1.69), 95.4% 0.20 (0.09– 0.41), 80.4% 7.61 (3.16 –18.32), 83.2% 0.80 
 ≥ 9 9/2816 0.70 (0.66– 0.73), 80.1% 0.74 (0.72– 0.76), 96.2% 2.93 (1.90– 4.51), 95.3% 0.39 (0.28– 0.55), 87.9% 7.85 (3.60– 17.08), 93.1% 0.80 
OutcomesScaleStudy/participantsSensitivity (95% CI), I2Specificity (95% CI), I2PLR (95% CI), I2NLR (95% CI), I2DOR (95% CI), I2AUC
All-cause mortality FACED        
 ≥3 13/3848 0.76 (0.72–0.80), 72.7% 0.68 (0.66– 0.69), 88.8% 2.31 (2.02– 2.63), 67.5% 0.38 (0.29– 0.49), 66.6% 6.54 (4.71– 9.07), 47.7% 0.77 
 ≥5 13/3848 0.34 (0.30–0.38), 83.0% 0.94 (0.93– 0.95), 74.9% 4.76 (3.48– 6.51), 58.3% 0.74 (0.62– 0.88), 91.7% 6.67 (4.25–10.45), 64.4% 0.87 
 BSI        
 ≥5 11/2986 0.94 (0.91– 0.96), 51.8% 0.27 (0.25–0.29), 94.9% 1.31 (1.18– 1.45), 88.6% 0.29 (0.19– 0.42), 0.0% 5.10 (3.26– 7.98), 0.0% 0.66 
 ≥9 11/2986 0.70 (0.65–0.75), 77.2% 0.66 (0.64–0.67), 93.8% 2.05 (1.78– 2.37), 66.6% 0.48 (0.38– 0.61), 48.1% 5.01 (3.85– 6.53), 0.0% 0.75 
Respiratory-cause mortality FACED        
 ≥3 3/1470 0.91 (0.85– 0.95), 24.4% 0.63 (0.60– 0.65), 76.7% 2.50 (2.07– 3.01), 77.4% 0.16 (0.09– 0.27), 20.2% 16.36 (7.97– 33.58), 37.2% 0.64 
 ≥5 3/1470 0.56 (0.48– 0.63), 71.1% 0.92 (0.90– 0.93), 8.3% 6.42 (5.13– 8.04), 0.0% 0.48 (0.34– 0.67), 70.4% 13.38 (8.80– 20.34), 21.6% 0.93 
Hospitalizations FACED        
 ≥3 9/2859 0.50 (0.46– 0.54), 90.9% 0.67 (0.65– 0.69), 90.5% 1.70 (1.38– 2.10), 78.6% 0.67 (0.54– 0.84), 79.4% 2.71 (1.79– 4.09), 71.6% 0.69 
 ≥5 9/2859 0.14 (0.12– 0.17), 83.0% 0.94 (0.92– 0.95), 72.9% 2.60 (1.84– 3.69), 37.7% 0.89 (0.82– 0.97), 82.3% 2.95 (1.93– 4.49), 41.5% 0.82 
 BSI        
 ≥5 9/2816 0.94 (0.92– 0.95), 57.4% 0.32 (0.30– 0.34), 95.9% 1.43 (1.21– 1.69), 95.4% 0.20 (0.09– 0.41), 80.4% 7.61 (3.16 –18.32), 83.2% 0.80 
 ≥ 9 9/2816 0.70 (0.66– 0.73), 80.1% 0.74 (0.72– 0.76), 96.2% 2.93 (1.90– 4.51), 95.3% 0.39 (0.28– 0.55), 87.9% 7.85 (3.60– 17.08), 93.1% 0.80 

Meta-regression and subgroup analyses of the cohorts were performed based on study design, age, follow-up time, and mortality. Regarding the FACED score with a cut-off value ≥ 3, study design and age were identified as sources of heterogeneity. In the subgroup analysis, heterogeneity decreased significantly when the analyses were restricted to older patients, especially those ≥ 65 years (I2 = 0, AUC = 0.72). However, significant heterogeneity associated with study design persisted. Regarding the BSI score with a cut-off value ≥ 5, study design had a significant influence on heterogeneity: a prospective design was associated with slightly lower heterogeneity (I2 = 84.54%). The results of the corresponding subgroup analysis are provided in Supplementary Table S1.

The results of Deeks’ test showed no significant publication bias across the included studies, based on FACED (P=0.531 for a cut-off value ≥ 3; P=0.315 for a cut-off value ≥ 5) or BSI (P=0.871 for a cut-off value ≥ 5; P=0.375 for a cut-off value ≥ 9).

Respiratory-related mortality was evaluated using data from three cohorts (n=1470) that used the FACED system [8,10]. We calculated an AUC of 0.93 for respiratory-related mortality prediction using the FACED score at a cut-off value ≥ 5.

Hospitalization prediction

The accuracy of the two systems for predicting hospitalization of patients with bronchiectasis was evaluated using data from nine cohorts (n=2859) in the case of FACED [10,16,17] and nine cohorts (n=2859) in the case of BSI [9,16,17] (Table 3). AUC values indicated that FACED scores at a cut-off value ≥ 5 could predict hospitalization (AUC = 0.82; Figure 5), as could BSI scores at cut-off values ≥ 5 or ≥ 9 (AUC = 0.80 for both cut-off values).

SROC curve of the FACED score for predicting hospitalization

Figure 5
SROC curve of the FACED score for predicting hospitalization
Figure 5
SROC curve of the FACED score for predicting hospitalization
Close modal

Meta-regression and subgroup analyses were not performed due to the limited number of included cohorts. Deeks’ test showed no significant publication bias (P=0.497 for a cut-off value ≥ 3; P=0.129 for a cut-off value ≥ 5) or BSI (P=0.153 for a cut-off value ≥ 5; P=0.896 for a cut-off value ≥ 9).

Agreement between FACED and BSI scores

By analyzing the paired FACED and BSI data available for 333 bronchiectasis patients (Table 4), we found that the FACED and BSI systems stratified 155 patients (46.54%) into the same group (κ = 0.25, P<0.001). However, the FACED score assigned 194 patients (58.26%) to the mild group, compared to the 84 (25.22%) classified as mild based on the BSI score (P<0.001). Additionally, the BSI score classified nearly five times more patients as severe (143 [42.94%] vs 30 [9%], P<0.001). In contrast, 58 of the 333 (17.42%) bronchiectasis patients stratified into the mild group based on the FACED score were stratified into the severe group based on the BSI score.

Table 4
Agreements analysis between FACED score and BSI
BSIFACEDTotal
MildModerateSevere
Mild 81 84 
Moderate 55 48 106 
Severe 58 59 26 143 
Total 194 109 30 333 
BSIFACEDTotal
MildModerateSevere
Mild 81 84 
Moderate 55 48 106 
Severe 58 59 26 143 
Total 194 109 30 333 

Early identification of bronchiectasis patients with poor prognosis, leading to their close monitoring and intensive treatment, can enhance the efficiency of clinical practice, improve resource allocation, and help to optimize therapeutic outcomes. This meta-analysis summarized the prognostic performance of the FACED and BSI systems in patients with bronchiectasis for the first time. Our results show that, when appropriate cut-offs are used, the FACED score can play an important role in predicting all-cause mortality, while both the FACED and BSI scores can predict hospitalization in patients with bronchiectasis. Further research is essential to gain a better understanding of the potential prognostic roles of FACED and BSI scores in bronchiectasis.

The multidimensional and heterogeneous nature of bronchiectasis makes predicting prognoses challenging [6]. For example, risk factors associated with mortality in bronchiectasis patients include age, sex, body mass index, smoking habits, Medical Research Council dyspnea score, radiographic extent, bacterial colonization, spirometric parameters, and comorbidities (restrictive and obstructive diseases) [21–24]. FACED takes into account five of these risk factors, while BSI takes into account the same five plus two more. Therefore, both systems may be useful for the prediction of bronchiectasis outcomes and stratification by severity. However, different studies have reported different results [10,11], highlighting the need for accurate comparisons of the two systems based on current available evidence.

The accuracy of FACED and BSI scores depends on the cut-off values used. The FACED score seems to predict all-cause mortality more accurately than the BSI score. This, coupled with its simplicity, may make FACED particularly powerful. It can be used to identify patients who do not need intensive therapy. However, it can also delay needed treatment if a patient is incorrectly classified as low risk. We found that the predictive performance of the BSI score regarding all-cause mortality was inadequate. Further research may lead to an improved system being developed.

Based on our systematic review, only the FACED score has been used in research studies to predict respiratory-related mortality, for which it showed an excellent prognostic performance at a cut-off value ≥ 5 (AUC = 0.93). Thus, it can be used for the reliable identification of high-risk bronchiectasis patients, although it may incorrectly classify low-risk bronchiectasis patients as having severe disease, leading to unnecessary treatment. Therefore, it should be used with caution when predicting respiratory-related mortality.

In addition to mortality, a substantial proportion of patients with bronchiectasis experience exacerbation in terms of frequency and severity [25], leading to hospitalization in severe cases. This hospitalization is associated with rapidly growing healthcare costs [26,27]. Accurate prediction of hospitalization may help clinicians and patients to weigh the potential benefits and costs of treatment more accurately. The results of our meta-analysis indicate that both FACED and BSI scores are useful for predicting hospitalization due to bronchiectasis. However, as the FACED system does not account for previous instances of exacerbation, which is a valuable predictor of future exacerbation [28], it should be used with caution to predict hospitalization, and it may require further improvement. Indeed, the EFACED system, which accounts for exacerbations, may predict hospitalization better, and it is recommended by the Spanish guidelines [7,29]. Future research should compare EFACED and BSI in terms of hospitalization prediction.

Regardless of the cut-off values tested, neither FACED nor BSI achieved ‘perfect’ prediction, defined as PLR > 10 and NLR < 0.1 [30], regarding predicting all-cause mortality or hospitalization. This highlights the need for improvement. Bronchiectasis is associated with various etiologies and comorbidities that influence disease outcomes. The risk of death, exacerbation, and hospitalization is significantly higher in bronchiectasis patients with comorbidities than in those without [30,31]. Understanding the underlying etiologies and comorbidities may allow more comprehensive evaluation, leading to personalized treatment and better prediction of prognosis. However, neither FACED nor BSI takes comorbidities into consideration. To address this problem, the Bronchiectasis Aetiology Comorbidity Index (BACI) was developed to account for 13 comorbidities associated with high risk [32]. Future research should explore whether adding comorbidities to the FACED and BSI systems improves their performance.

Pseudomonas aeruginosa is associated with bronchiectasis and poor clinical outcomes [33]. Chronic colonization by P. aeruginosa is scored with 1 point in the FACED system and 3 points in the BSI system. P. aeruginosa has been reported to be significantly more abundant in patients with moderate or severe bronchiectasis, based on FACED scores [34]. Nevertheless, a large multinational study found that P. aeruginosa infection had no independent impact on mortality, and instead suggested that the association between P. aeruginosa and high mortality risk depends on exacerbation of the disease [35]. We hypothesize that reducing the points assigned to P. aeruginosa colonization may improve the ability of the BSI system to predict mortality.

Our conclusions should be interpreted carefully in light of the limitations of our systematic review and meta-analysis. Only 10 studies were included even after a comprehensive literature search, and some studies contained overlapping data. The evidence base comes primarily from Europe and to a lesser degree from Asia, yet the disease prevalence and hospital treatment and management practices differ by geographic region and healthcare setting. Therefore, the performance of FACED and BSI scores should be assessed in a greater diversity of settings. We excluded studies not published in English or Chinese, which may have led to bias. Additionally, the studies in our review did not adjust for the fact that during follow-up, patients may have received treatments that influenced disease outcomes.

Beyond these research limitations, the intrinsic limitations of the FACED and BSI systems should be taken into account when using them to stratify bronchiectasis patients. The prevalence of bronchiectasis and health resources in different countries should be considered when interpreting and applying the results of the FACED and BSI systems in clinical settings. For instance, the FACED score is easy to calculate owing to its simplicity, while an online calculator may be needed to determine the BSI score, and the BACI score is more complicated to calculate. Neither the FACED nor the BSI system includes all relevant factors, such as biological activity or impact of bronchiectasis on the patient's quality of life. Using a “clinical fingerprint” and “control model” approach may improve clinicians’ ability to take into account the complexity and heterogeneity of bronchiectasis, ultimately improving the quality of patient care [36].

The available evidence suggests that for patients with bronchiectasis, the FACED score can play an important role in predicting mortality, while both the FACED and BSI scores may be useful for predicting hospitalization. Further studies in diverse populations and healthcare settings are needed to validate our findings.

The datasets supporting the conclusions of this article are included within the article and in the supplementary files.

The authors declare that there are no competing interests associated with the manuscript.

This work was supported by the National Natural Science Foundation of China [grant number 31671189]; and the Science and Technology Department of Sichuan Province [grant number 18ZDYF2039]. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

M.H. and M.Z. designed the study, screened the literature, performed the quality assessment, extracted and analyzed the data, and drafted the manuscript. C.W., Z.W., X.X., and H.W. extracted, analyzed, and interpreted the data, and revised the manuscript. D.C. and Y.J. designed, supervised the study, and revised the manuscript. All authors read and approved the final version of the manuscript.

We thank Prof. Dong Tao Lin from Sichuan University for copyediting this manuscript.

AUC

area under the curve

BACI

Bronchiectasis Aetiology Comorbidity Index

BSI

Bronchiectasis Severity Index

CI

confidence interval

DOR

diagnostic odds ratio

EFACED

exacerbation added to FACED

FACED

forced expiratory volume in 1 s, Age, Chronic colonization, Extension, and Dyspnea

NLR

negative likelihood ratio

PLR

positive likelihood ratio

QUADAS-2

Quality Assessment of Diagnostic Accuracy Studies-2

SROC

summary receiver operating characteristic

1.
Polverino
E.
,
Goeminne
P.C.
,
McDonnell
M.J.
,
Aliberti
S.
,
Marshall
S.E.
and
Loebinger
M.R.
(
2017
)
European Respiratory Society guidelines for the management of adult bronchiectasis
.
Eur. Respir. J.
50
,
pii: 1700629
2.
O’Donnell
A.E.
(
2018
)
Medical management of bronchiectasis
.
J. Thorac. Dis.
10
,
S3428
S3435
[PubMed]
3.
Chotirmall
S.H.
and
Chalmers
J.D.
(
2018
)
Bronchiectasis: an emerging global epidemic
.
BMC Pulm. Med.
18
,
76
[PubMed]
4.
McShane
P.J.
and
Tino
G.
(
2019
)
Bronchiectasis
.
Chest
155
,
825
833
[PubMed]
5.
Poppelwell
L.
and
Chalmers
J.D.
(
2014
)
Defining severity in non-cystic fibrosis bronchiectasis
.
Exp. Rev. Respir. Med.
8
,
249
262
6.
Martínez-García
M.A.
,
Olveira
C.
,
Máiz
L.
,
Girón
R.M.
,
Prados
C.
,
de la Rosa
D.
et al.
(
2019
)
Bronchiectasis: a complex, heterogeneous disease
.
Arch. Bronconeumol.
55
,
427
433
[PubMed]
7.
Martínez-García
M.Á.
,
Máiz
L.
,
Olveira
C.
,
Girón
R.M.
,
de la Rosa
D.
,
Blanco
M.
et al.
(
2018
)
Spanish guidelines on the evaluation and diagnosis of bronchiectasis in adults
.
Arch. Bronconeumol.
54
,
79
87
[PubMed]
8.
Martinez-Garcia
M.A.
,
De Gracia
J.
,
Relat
M.V.
,
Giron
R.M.
,
Carro
L.M.
,
De La Rosa Carrillo
D.
et al.
(
2014
)
Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score
.
Eur. Respir. J.
43
,
1357
1367
[PubMed]
9.
Chalmers
J.D.
,
Goeminne
P.
,
Aliberti
S.
,
McDonnell
M.J.
,
Lonni
S.
and
Davidson
J.
(
2014
)
The bronchiectasis severity index. An international derivation and validation study
.
Am. J. Respir. Crit. Care Med.
189
,
576
585
[PubMed]
10.
Athanazio
R.
,
Pereira
M.C.
,
Gramblicka
G.
,
Cavalcanti-Lundgren
F.
,
de Figueiredo
M.F.
,
Arancibia
F.
et al.
(
2017
)
Latin America validation of FACED score in patients with bronchiectasis: an analysis of six cohorts
.
BMC Pulm. Med.
17
,
73
[PubMed]
11.
Ellis
H.C.
,
Cowman
S.
,
Fernandes
M.
,
Wilson
R.
and
Loebinger
M.R.
(
2016
)
Predicting mortality in bronchiectasis using bronchiectasis severity index and FACED scores: a 19-year cohort study
.
Eur. Respir. J.
47
,
482
489
[PubMed]
12.
Wang
H.
,
Guo
S.
,
Wan
C.
,
Yang
T.
,
Zeng
N.
,
Wu
Y.
et al.
(
2017
)
Tumor necrosis factor-α-308 G/A polymorphism and risk of sepsis, septic shock, and mortality: an updated meta-analysis
.
Oncotarget
8
,
94910
94919
[PubMed]
13.
Koh
G.C.
,
Khoo
H.E.
,
Wong
M.L.
and
Koh
D.
(
2008
)
The effects of problem-based learning during medical school on physician competency: a systematic review
.
CMAJ
178
,
34
41
[PubMed]
14.
Whiting
P.F.
,
Rutjes
A.W.
,
Westwood
M.E.
,
Mallett
S.
,
Deeks
J.J.
,
Reitsma
J.B.
et al.
(
2011
)
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
.
Ann. Intern. Med.
155
,
529
536
[PubMed]
15.
Rosales-Mayor
E.
,
Polverino
E.
,
Raguer
L.
,
Alcaraz
V.
,
Gabarrus
A.
,
Ranzani
O.
et al.
(
2017
)
Comparison of two prognostic scores (BSI and FACED) in a Spanish cohort of adult patients with bronchiectasis and improvement of the FACED predictive capacity for exacerbations
.
PLoS ONE
12
,
e0175171
[PubMed]
16.
Wang
H.
,
Ji
X.B.
,
Li
C.W.
,
Lu
H.W.
,
Mao
B.
,
Liang
S.
et al.
(
2018
)
Clinical characteristics and validation of bronchiectasis severity score systems for post-tuberculosis bronchiectasis
.
Clin. Respir. J.
12
,
2346
2353
[PubMed]
17.
McDonnell
M.J.
,
Aliberti
S.
,
Goeminne
P.C.
,
Dimakou
K.
,
Zucchetti
S.C.
and
Davidson
J.
(
2016
)
Multidimensional severity assessment in bronchiectasis: an analysis of seven European cohorts
.
Thorax
71
,
1110
1118
[PubMed]
18.
Minov
J.
,
Karadzinska-Bislimovska
J.
,
Vasilevska
K.
,
Stoleski
S.
and
Mijakoski
D.
(
2015
)
Assessment of the non-cystic fibrosis bronchiectasis severity: The FACED Score vs the Bronchiectasis Severity Index
.
Open Respir. Med. J.
9
,
46
51
[PubMed]
19.
Costa
J.C.
,
Machado
J.N.
,
Ferreira
C.
,
Gama
J.
and
Rodrigues
C.
(
2018
)
The Bronchiectasis Severity Index and FACED score for assessment of the severity of bronchiectasis
.
Pulmonology
24
,
149
154
20.
Sim
W.
,
Siow
W.
,
Puah
S.
,
Verma
A.
,
Lee
Y.
,
Abisheganaden
J.
et al.
(
2017
)
The role of the bronchiectasis severity index (BSI) and faced score in the prediction of clinical outcomes in patients with bronchiectasis in singapore
.
Am. J. Respir. Crit. Care Med. Conf.
195
,
A4725
21.
Goeminne
P.C.
,
Nawrot
T.S.
,
Ruttens
D.
,
Seys
S.
and
Dupont
L.J.
(
2014
)
Mortality in non-cystic fibrosis bronchiectasis: a prospective cohort analysis
.
Respir. Med.
108
,
287
296
[PubMed]
22.
Loebinger
M.R.
,
Wells
A.U.
,
Hansell
D.M.
,
Chinyanganya
N.
,
Devaraj
A.
,
Meister
M.
et al.
(
2009
)
Mortality in bronchiectasis: a long-term study assessing the factors influencing survival
.
Eur. Respir. J.
34
,
843
849
[PubMed]
23.
Onen
Z.P.
,
Gulbay
B.E.
,
Sen
E.
,
Yildiz
O.A.
,
Saryal
S.
,
Acican
T.
et al.
(
2007
)
Analysis of the factors related to mortality in patients with bronchiectasis
.
Respir. Med.
101
,
1390
1397
[PubMed]
24.
Goeminne
P.C.
,
Scheers
H.
,
Decraene
A.
,
Seys
S.
and
Dupont
L.J.
(
2012
)
Risk factors for morbidity and death in non-cystic fibrosis bronchiectasis: a retrospective cross-sectional analysis of CT diagnosed bronchiectatic patients
.
Respir. Res.
13
,
21
[PubMed]
25.
Martinez-Garcia
M.Á.
,
Athanazio
R.
,
Gramblicka
G.
,
Corso
M.
,
Cavalcanti Lundgren
F.
,
Fernandes de Figueiredo
M.
et al.
(
2019
)
Prognostic value of frequent exacerbations in bronchiectasis: the relationship with disease severity
.
Arch. Bronconeumol.
55
,
81
87
[PubMed]
26.
Seitz
A.E.
,
Olivier
K.N.
,
Steiner
C.A.
,
Montes de Oca
R.
,
Holland
S.M.
and
Prevots
D.R.
(
2010
)
Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993-2006
.
Chest
138
,
944
949
[PubMed]
27.
de la Rosa Carrillo
D.
,
Navarro Rolon
A.
,
Giron Moreno
R.M.
,
Montull Veiga
B.
,
Olveira Fuster
C.
and
Padilla Galo
A.
Cost of hospitalizations due to exacerbation in patients with non-cystic fibrosis bronchiectasis
.
Respiration
2018
,
1
11
,
28.
Menendez
R.
,
Mendez
R.
,
Polverino
E.
,
Rosales-Mayor
E.
,
Amara-Elori
I.
,
Reyes
S.
et al.
(
2017
)
Factors associated with hospitalization in bronchiectasis exacerbations: a one-year follow-up study
.
Respir. Res.
18
,
176
[PubMed]
29.
Martinez-Garcia
M.A.
,
Athanazio
R.A.
,
Giron
R.
,
Maiz-Carro
L.
,
de la Rosa
D.
and
Olveira
C.
(
2017
)
Predicting high risk of exacerbations in bronchiectasis: the E-FACED score
.
Int. J. Chron. Obstruct Pulmon. Dis.
12
,
275
284
[PubMed]
30.
Deeks
J.J.
and
Altman
D.G.
(
2004
)
Diagnostic tests 4: likelihood ratios
.
BMJ
329
,
168
169
[PubMed]
31.
Chung
W.S.
and
Lin
C.L.
(
2018
)
Acute respiratory events in patients with bronchiectasis-COPD overlap syndrome: a population-based cohort study
.
Respir. Med.
140
,
6
10
[PubMed]
32.
McDonnell
M.J.
,
Aliberti
S.
,
Goeminne
P.C.
,
Restrepo
M.I.
,
Finch
S.
and
Pesci
A.
(
2016
)
Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study
.
Lancet Respir. Med.
4
,
969
979
[PubMed]
33.
Finch
S.
,
McDonnell
M.J.
,
Abo-Leyah
H.
,
Aliberti
S.
and
Chalmers
J.D.
(
2015
)
A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis
.
Ann. Am. Thorac. Soc.
12
,
1602
1611
[PubMed]
34.
Lee
S.
,
Lee
Y.
,
Park
J.
,
Cho
Y.-J.
,
Yoon
H.
,
Lee
C.-T.
et al.
(
2018
)
Characterization of microbiota in bronchiectasis patients with different disease severities
.
J. Clin. Med.
7
,
429
35.
Araujo
D.
,
Shteinberg
M.
,
Aliberti
S.
,
Goeminne
P.C.
,
Hill
A.T.
and
Fardon
T.C.
(
2018
)
The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis
.
Eur. Respir. J.
51
,
pii: 1701953
[PubMed]
36.
Martinez-Garcia
M.A.
,
Aksamit
T.R.
and
Agusti
A.
(
2020
)
Clinical fingerprinting: a way to address the complexity and heterogeneity of bronchiectasis in practice
.
Am. J. Respir. Crit. Care Med.
201
,
14
19
[PubMed]
This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Supplementary data