Guo et al. (Bioscience Reports (2018) 38, BSR20180177) published a meta-analysis concerning the association between five single nucleotide polymorphisms (SNPs) in the high-affinity IgE receptor β chain (FcεRIβ) gene, namely E237G, -109 C/T, RsaI_in2, RsaI_ex7, and I181L, and risk of asthma and allergic rhinitis based on available 29 case–control studies. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of association of SNPs in FcεRIβ gene with allergic diseases risk. They found that FcεRIβ E237G (237G vs. 237E: OR = 1.28, 95% CI = 1.06–1.53) and −109 C/T (TT vs. CT+CC: OR = 1.58, 95% CI = 1.26–1.98) were risk factors for allergic diseases. Guo et al.’s findings are interesting, but we found that several issues should be clarified after carefully reading the paper. Here, we intended to comment on these data clarifications.

Dear editor,

We researched the relevant studies about the association between the high-affinity IgE receptor β chain (FcεRIβ) polymorphisms and allergic diseases risk in Medline, Embase, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases. No limit of start year and month was set, and the updated time was August 2019. The terms, search strategies, and inclusion/exclusion criteria were the same as reported by Guo et al. [1]. Comparing our retrieved studies with the ones in Table 1 of Guo et al.’s paper [1], it seems that some errors or mistakes should be corrected.

Table 1
Main characteristics of eligible studies
AuthorYearCountryEthnicityAtopySample size (n)Genotype frequency (n)HWE (P)
CaseControlCaseControl
EEEGGGEEEGGG
FcεRIβ gene E237G polymorphism 
Shirakawa 1996 Japan Asian asthma 300 100 256 44 94 1.000 
Green 1998 South Africa African asthma 41 42 27 12 25 17 0.172 
Green 1998 South Africa Caucasian asthma 46 51 35 11 47 1.000 
Rohrbach 1998 Switzerland Caucasian asthma 224 159 207 17 151 1.000 
Ishizawa 1999 Japan Asian asthma 90 102 70 19 81 21 0.593 
Chen 2000 China Asian asthma 101 47 59 39 30 16 1.000 
Soriano 2000 Spain Caucasian asthma 145 47 134 11 43 1.000 
Takabayashi 2000 Japan Asian asthma 100 100 69 27 65 33 1.000 
Nagata 2001 Japan Asian rhinitis 233 100 150 76 77 18 0.021 
Zeng 2001 China Asian asthma 69 28 61 27 1.000 
Cui 2003 China Asian asthma 216 198 125 80 11 148 46 0.766 
Korzycka 2004 Poland Caucasian asthma rhinitis 98 87 92 83 1.000 
Rigoli 2004 Italy Caucasian asthma rhinitis 100 103 79 16 102 1.000 
Sharma 2004 India Asian asthma 329 266 300 29 250 16 1.000 
Zhang (Chinese) 2004 Singapore Asian asthma 141 157 81 57 108 42 1.194 
Zhang (Indian) 2004 Singapore Asian asthma 82 98 71 10 80 18 1.000 
Zhang (Malay) 2004 Singapore Asian asthma 68 100 49 19 77 23 0.353 
Zhao 2004 China Asian asthma 151 105 126 23 92 13 1.000 
Kim 2006 Korea Asian asthma 307 264 235 64 177 81 0.353 
Li 2006 China Asian asthma 50 40 43 40 1.000 
Liu 2006 China Asian asthma 60 50 45 14 39 10 0.527 
Kim 2009 Korea Asian asthma 347 303 244 99 217 81 0.409 
Wang 2009 China Asian asthma 446 506 309 121 16 314 165 27 0.386 
Undarmaa 2010 Japan Asian asthma 367 630 256 102 440 165 25 0.061 
Undarmaa 2010 Japan Asian asthma 322 336 243 70 242 85 0.642 
Murk 2011 U.S.A. mixed asthma 100 486 91 452 33 0.470 
Dmitrieva 2012 Russia Caucasian asthma 224 172 217 170 1.000 
Ungvari 2012 Hungary Caucasian asthma 436 765 418 17 723 38 0.004 
Zheng 2012 China Asian asthma 198 110 126 61 11 76 29 0.325 
Chen 2014 China Asian asthma 46 52 38 38 <0.001 
Wan 2014 China Asian asthma 58 50 41 16 47 1.000 
Ramphul 2014 India Asian asthma 192 188 170 21 163 24 0.605 
Amo 2016 Spain Caucasian rhinitis 366 526 330 36 487 39 1.000 
Amo 2016 Spain Caucasian asthma rhinitis 149 526 146 487 39 1.000 
Hua 2016 China Asian asthma 1000 1000 659 276 65 688 289 23 0.252 
Yang 2017 China Asian asthma 74 110 38 31 77 30 1.000 
AuthorYearCountryEthnicityAtopySample size (n)Genotype frequency (n)HWE (P)
CaseControlCaseControl
EEEGGGEEEGGG
FcεRIβ gene E237G polymorphism 
Shirakawa 1996 Japan Asian asthma 300 100 256 44 94 1.000 
Green 1998 South Africa African asthma 41 42 27 12 25 17 0.172 
Green 1998 South Africa Caucasian asthma 46 51 35 11 47 1.000 
Rohrbach 1998 Switzerland Caucasian asthma 224 159 207 17 151 1.000 
Ishizawa 1999 Japan Asian asthma 90 102 70 19 81 21 0.593 
Chen 2000 China Asian asthma 101 47 59 39 30 16 1.000 
Soriano 2000 Spain Caucasian asthma 145 47 134 11 43 1.000 
Takabayashi 2000 Japan Asian asthma 100 100 69 27 65 33 1.000 
Nagata 2001 Japan Asian rhinitis 233 100 150 76 77 18 0.021 
Zeng 2001 China Asian asthma 69 28 61 27 1.000 
Cui 2003 China Asian asthma 216 198 125 80 11 148 46 0.766 
Korzycka 2004 Poland Caucasian asthma rhinitis 98 87 92 83 1.000 
Rigoli 2004 Italy Caucasian asthma rhinitis 100 103 79 16 102 1.000 
Sharma 2004 India Asian asthma 329 266 300 29 250 16 1.000 
Zhang (Chinese) 2004 Singapore Asian asthma 141 157 81 57 108 42 1.194 
Zhang (Indian) 2004 Singapore Asian asthma 82 98 71 10 80 18 1.000 
Zhang (Malay) 2004 Singapore Asian asthma 68 100 49 19 77 23 0.353 
Zhao 2004 China Asian asthma 151 105 126 23 92 13 1.000 
Kim 2006 Korea Asian asthma 307 264 235 64 177 81 0.353 
Li 2006 China Asian asthma 50 40 43 40 1.000 
Liu 2006 China Asian asthma 60 50 45 14 39 10 0.527 
Kim 2009 Korea Asian asthma 347 303 244 99 217 81 0.409 
Wang 2009 China Asian asthma 446 506 309 121 16 314 165 27 0.386 
Undarmaa 2010 Japan Asian asthma 367 630 256 102 440 165 25 0.061 
Undarmaa 2010 Japan Asian asthma 322 336 243 70 242 85 0.642 
Murk 2011 U.S.A. mixed asthma 100 486 91 452 33 0.470 
Dmitrieva 2012 Russia Caucasian asthma 224 172 217 170 1.000 
Ungvari 2012 Hungary Caucasian asthma 436 765 418 17 723 38 0.004 
Zheng 2012 China Asian asthma 198 110 126 61 11 76 29 0.325 
Chen 2014 China Asian asthma 46 52 38 38 <0.001 
Wan 2014 China Asian asthma 58 50 41 16 47 1.000 
Ramphul 2014 India Asian asthma 192 188 170 21 163 24 0.605 
Amo 2016 Spain Caucasian rhinitis 366 526 330 36 487 39 1.000 
Amo 2016 Spain Caucasian asthma rhinitis 149 526 146 487 39 1.000 
Hua 2016 China Asian asthma 1000 1000 659 276 65 688 289 23 0.252 
Yang 2017 China Asian asthma 74 110 38 31 77 30 1.000 
AuthorYearCountryEthnicityAtopySample size (n)Genotype frequency (n)HWE (P)
casecontrolCasecontrol
CCCTTTCCCTTT
FcεRIβ gene C-109T polymorphism 
Dickson 1999 Australia Caucasian asthma 44 26 11 17 16 15 0.428 
Cui 2003 China Asian asthma 216 198 23 106 87 19 103 76 0.059 
Gan 2004 China Asian asthma 45 45 10 12 23 12 14 19 0.015 
Zhao 2004 China Asian asthma 126 87 11 69 46 38 40 0.996 
Hizawa 2006 Japan Asian asthma 374 374 39 178 157 49 169 156 0.762 
Kim 2006 Korea Asian asthma 302 264 17 139 146 23 128 113 0.114 
Potaczek 2007 Poland Caucasian asthma 154 154 25 72 57 27 70 57 0.495 
Kim 2009 Korea Asian asthma 346 303 20 167 159 28 135 140 0.576 
Sharma 2009 India Asian asthma 237 221 89 108 40 34 118 69 0.156 
Tikhonova 2010 Russia Caucasian asthma 140 136 18 69 53 18 70 48 0.339 
Ramphul 2014 India Asian asthma 189 188 55 99 35 66 87 35 0.505 
Wan 2014 China Asian asthma 58 50 25 31 16 33 1.000 
Amo 2016 Spain Caucasian asthma rhinitis 366 526 78 188 100 105 277 144 0.176 
Amo 2016 Spain Caucasian rhinitis 149 526 35 67 47 105 277 144 0.176 
Hua 2016 China Asian asthma 1000 1000 148 436 416 124 470 406 0.502 
AuthorYearCountryEthnicityAtopySample size (n)Genotype frequency (n)HWE (P)
casecontrolCasecontrol
CCCTTTCCCTTT
FcεRIβ gene C-109T polymorphism 
Dickson 1999 Australia Caucasian asthma 44 26 11 17 16 15 0.428 
Cui 2003 China Asian asthma 216 198 23 106 87 19 103 76 0.059 
Gan 2004 China Asian asthma 45 45 10 12 23 12 14 19 0.015 
Zhao 2004 China Asian asthma 126 87 11 69 46 38 40 0.996 
Hizawa 2006 Japan Asian asthma 374 374 39 178 157 49 169 156 0.762 
Kim 2006 Korea Asian asthma 302 264 17 139 146 23 128 113 0.114 
Potaczek 2007 Poland Caucasian asthma 154 154 25 72 57 27 70 57 0.495 
Kim 2009 Korea Asian asthma 346 303 20 167 159 28 135 140 0.576 
Sharma 2009 India Asian asthma 237 221 89 108 40 34 118 69 0.156 
Tikhonova 2010 Russia Caucasian asthma 140 136 18 69 53 18 70 48 0.339 
Ramphul 2014 India Asian asthma 189 188 55 99 35 66 87 35 0.505 
Wan 2014 China Asian asthma 58 50 25 31 16 33 1.000 
Amo 2016 Spain Caucasian asthma rhinitis 366 526 78 188 100 105 277 144 0.176 
Amo 2016 Spain Caucasian rhinitis 149 526 35 67 47 105 277 144 0.176 
Hua 2016 China Asian asthma 1000 1000 148 436 416 124 470 406 0.502 

Abbreviation: HWE, Hardy–Weinberg equilibrium.

First, several relevant studies that met the inclusion criteria were missed in Guo et al.’s paper [2–15]. Of the 14 missed studies, 5 articles were published before January 2000 [2–6], which was the start time of published paper restricted in Guo et al.’s literature searching strategy [1]; 3 reports were from Japan [2,6,11], 4 studies were from China [9,13–15], 1 each was from South Africa [3], Switzerland [4], Australia [5], India [7], South Korea [8], the U.S.A. [11], and Hungary [12], respectively. In Green et al.’s study, black and white populations were recruited, respectively [3]. In Undarmaa et al.’s report, children and adult populations were collected, respectively [10].

Second, several studies published by the same research group were included in Guo et al.’s report [1]. According to the inclusion and exclusion criteria, when more than two studies were reported by the same research group, only the paper with the largest sample size was included in the analysis. We think Cui et al.’s study [16], published in 2004, with 106 adult asthmatics and 106 controls, were incorporated into their another paper, published in 2003, with 216 (number including adults and children) cases and 198 controls [17]. Similarly, the study populations in Hua et al.’s papers [18,19] and the Chinese Han case/control populations in Ramphul et al.’s article [20], were recruited by the same research group, the two smaller sample-size studies should be excluded from the analysis [18,20].

Third, one study reported by Laprise et al. [21], with atopic/non-atopic contrast groups, not all the subjects in atopic group met with the diagnosis criteria of asthma, should be excluded from the analysis.

Fourth, the reported genotype frequency for the C-109T or E+237G polymorphisms of FcεRIβ gene in two studies of Guo et al.’s paper [1] were not in agreement with the ones in their original papers [22,23]. In Sharma and Ghosh’s study, the CC, CT, and TT genotype frequency for C-109T polymorphism in case/control groups were (89, 108, and 40)/(34, 118, and 69), respectively [22], which were wrongly counted as (87, 113, and 37)/(39, 108, and 74), respectively, in Guo et al.’s paper [1]. In Amo et al.’s published article, the EE, EG, and GG genotype frequency in control group for E+237G polymorphism were 487, 39, and 0, respectively [23], which were wrongly counted as 144, 277, and 105, respectively [1].

Considering the above-listed mistakes or errors in Guo et al.’s published paper, it seems that the findings and conclusions of Guo et al.’s study were not entirely reliable [1]. To overcome the limitations, we performed an updated meta-analysis to re-assess the associations of C-109T and E+237G polymorphisms in the FcεRIβ gene with allergic disease (asthma and allergic rhinitis) risk. The statistical analysis methods and software used in this comment were the same as reported by Guo et al., unless otherwise indicated [1].

The main characteristics of the eligible studies [2–17,19,20,22–42], including the first author, publication year, country where individual study was conducted, ethnicity of study population, atopic disease category, sample size of case/control groups, the detailed genotype frequency, and the P-values for Hardy–Weinberg Equilibrium (HWE) test, were shown in Table 1. There were 36 case–control studies about the association between E+237G variant and allergic diseases risk [2–4,6–15,17,19,20,23–28,30–33,36,38,39,41,42], and 15 were about the correlation of C-109T polymorphism with allergic diseases risk [5,8,12,14,17,19,22,23,29,34,35,37,38,40]. Of the 15 case–control studies about C-109T polymorphism and allergic disease risk (14 ones according to ethnicity or HWE classification), 10 were performed in Asians [8,14,17,19,20,22,29,34,35,38] and 4 were conducted in Caucasians [5,23,37,40], respectively; 13 studies were about asthma risk [5,8,17,19,20,22,29,34,37,38,40], 1 was about allergic rhinitis risk [23], and 1 about asthma and rhinitis risk [23], respectively; genotype frequency distribution in control groups of 13 studies were in agreement with HWE [5,8,14,17,19,20,22,23,34,35,37,38,40] and 1 was not [29], respectively. Of the 36 case–control studies about E+237G variant with allergic diseases risk (35 ones according to ethnicity or HWE classification), 25 were carried out in Asians [2,6–10,13–15,17,19,20,24,26–29,32,33,36,38,39,42], 8 were performed in Caucasians [3,4,12,23,25,30,31,41], 1 in Africans [3] and 1 in mixed populations [11], respectively; 31 studies were about asthma risk [2–4,6–15,17,19,20,24–26,28,29,31–33,36,38,39,41,42], 2 were on rhinitis risk [23,27], and 3 were concerned with asthma/rhinitis risk [23,30,31], respectively; genotype frequency distribution in control groups of 32 studies were in line with HWE [2–4,6–11,13–15,17,19,20,23–26,28–33,36,38,39,41,42] and 3 were not [12,13,27], respectively.

Table 2 listed the summary odds ratios (ORs) of the association of FcεRIβ C-109T polymorphism with allergic diseases risk. Overall, no significant associations between C-109T polymorphism and allergic diseases risk were observed (OR = 1.001, 95% confidence interval (CI): 0.909–1.102 for CC+CT vs. TT and OR = 1.015, 95% CI: 0.788–1.307 for CC vs. CT+TT, respectively). When subgroup analyses by ethnicity (Asian and Caucasian), allergic disease classification (asthma, rhinitis, and both) and HWE (in and not) were performed, we did not find any statistically significant associations of C-108T polymorphism with allergic diseases risk (Table 2). No any publication and other small study related biases were observed in overall and subgroup analyses (Table 2).

Table 2
Summary ORs for the association between FcεRIβ C-109T polymorphism and allergic diseases risk
ComparisonsSample sizeNumber of studiesHypothesis testsHeterogeneity testsPublication bias test (P)
Case/controlOR (95% CI)zPχ2 (df)PI2 (%)Begg’s testEgger’s test
Overall 
C vs. T 7492/7144 14 1.024 (0.900–1.164) 0.36 0.722 37.83 (13) <0.001 65.6 0.784 0.958 
CC vs. TT 1994/1862 14 1.007 (0.759–1.335) 0.05 0.963 36.77 (13) <0.001 64.6 0.870 0.582 
CC vs. CT 2333/2231 14 1.028 (0.807–1.311) 0.22 0.823 30.59 (13) 0.004 57.5 0.702 0.419 
CT vs. TT 3165/3051 14 0.984 (0.890–1.089) 0.31 0.758 14.33 (13) 0.351 9.3 0.547 0.538 
CC+CT vs. TT 3746/3572 14 1.001 (0.909–1.102) 0.01 0.989 21.72 (13) 0.060 40.1 0.784 0.670 
CC vs. CT+TT 3746/3572 14 1.015 (0.788–1.307) 0.11 0.911 37.20 (13) <0.001 65.1 0.956 0.446 
Stratification by ethnicity 
Asians 
C vs. T 5786/5460 10 1.052 (0.883–1.254) 0.57 0.567 36.51 (9) <0.001 75.3 0.655 0.802 
CC+CT vs. TT 2893/2730 10 1.070 (0.895–1.280) 0.74 0.458 18.97 (9) 0.025 52.6 0.325 0.304 
CC vs. CT+TT 2893/2730 10 0.998 (0.695–1.434) 0.01 0.992 36.70 (9) <0.001 75.5 0.788 0.537 
Caucasians 
C vs. T 1706/1684 0.984 (0.858–1.127) 0.24 0.813 0.89 (3) 0.828 <0.1 0.042 0.036 
CC+CT vs. TT 853/842 0.919 (0.747–1.130) 0.80 0.422 1.99 (3) 0.576 <0.1 0.174 0.201 
CC vs. CT+TT 853/842 1.067 (0.836–1.362) 0.52 0.601 0.48 (3) 0.924 <0.1 1.000 0.412 
Stratification by atopic disease categories 
Asthma 
C vs. T 6462/6092 13 1.024 (0.885–1.185) 0.32 0.750 37.83 (12) <0.001 68.3 0.903 0.950 
CC+CT vs. TT 3231/3046 13 1.032 (0.883–1.207) 0.40 0.691 21.52 (12) 0.043 44.2 1.000 0.712 
CC vs. CT+TT 3231/3046 13 0.997 (0.744–1.336) 0.02 0.983 37.13 (12) <0.001 67.7 0.542 0.472 
Stratification by HWE 
C vs. T 7402/7054 13 1.035 (0.907–1.180) 0.51 0.613 36.83 (12) <0.001 67.4 1.000 0.861 
CC+CT vs. TT 3701/3527 13 1.006 (0.913–1.108) 0.11 0.911 21.00 (12) 0.050 42.9 0.272 0.483 
CC vs. CT+TT 3701/3527 13 1.026 (0.789–1.335) 0.19 0.848 36.76 (12) <0.001 67.4 0.807 0.516 
ComparisonsSample sizeNumber of studiesHypothesis testsHeterogeneity testsPublication bias test (P)
Case/controlOR (95% CI)zPχ2 (df)PI2 (%)Begg’s testEgger’s test
Overall 
C vs. T 7492/7144 14 1.024 (0.900–1.164) 0.36 0.722 37.83 (13) <0.001 65.6 0.784 0.958 
CC vs. TT 1994/1862 14 1.007 (0.759–1.335) 0.05 0.963 36.77 (13) <0.001 64.6 0.870 0.582 
CC vs. CT 2333/2231 14 1.028 (0.807–1.311) 0.22 0.823 30.59 (13) 0.004 57.5 0.702 0.419 
CT vs. TT 3165/3051 14 0.984 (0.890–1.089) 0.31 0.758 14.33 (13) 0.351 9.3 0.547 0.538 
CC+CT vs. TT 3746/3572 14 1.001 (0.909–1.102) 0.01 0.989 21.72 (13) 0.060 40.1 0.784 0.670 
CC vs. CT+TT 3746/3572 14 1.015 (0.788–1.307) 0.11 0.911 37.20 (13) <0.001 65.1 0.956 0.446 
Stratification by ethnicity 
Asians 
C vs. T 5786/5460 10 1.052 (0.883–1.254) 0.57 0.567 36.51 (9) <0.001 75.3 0.655 0.802 
CC+CT vs. TT 2893/2730 10 1.070 (0.895–1.280) 0.74 0.458 18.97 (9) 0.025 52.6 0.325 0.304 
CC vs. CT+TT 2893/2730 10 0.998 (0.695–1.434) 0.01 0.992 36.70 (9) <0.001 75.5 0.788 0.537 
Caucasians 
C vs. T 1706/1684 0.984 (0.858–1.127) 0.24 0.813 0.89 (3) 0.828 <0.1 0.042 0.036 
CC+CT vs. TT 853/842 0.919 (0.747–1.130) 0.80 0.422 1.99 (3) 0.576 <0.1 0.174 0.201 
CC vs. CT+TT 853/842 1.067 (0.836–1.362) 0.52 0.601 0.48 (3) 0.924 <0.1 1.000 0.412 
Stratification by atopic disease categories 
Asthma 
C vs. T 6462/6092 13 1.024 (0.885–1.185) 0.32 0.750 37.83 (12) <0.001 68.3 0.903 0.950 
CC+CT vs. TT 3231/3046 13 1.032 (0.883–1.207) 0.40 0.691 21.52 (12) 0.043 44.2 1.000 0.712 
CC vs. CT+TT 3231/3046 13 0.997 (0.744–1.336) 0.02 0.983 37.13 (12) <0.001 67.7 0.542 0.472 
Stratification by HWE 
C vs. T 7402/7054 13 1.035 (0.907–1.180) 0.51 0.613 36.83 (12) <0.001 67.4 1.000 0.861 
CC+CT vs. TT 3701/3527 13 1.006 (0.913–1.108) 0.11 0.911 21.00 (12) 0.050 42.9 0.272 0.483 
CC vs. CT+TT 3701/3527 13 1.026 (0.789–1.335) 0.19 0.848 36.76 (12) <0.001 67.4 0.807 0.516 

Abbreviation: df, degree of freedom.

Table 3 showed the summary ORs for the association between FcεRIβ E237G variant and allergic diseases risk. Overall, we observed FcεRIβ 237G allele was associated with increased risk of allergic diseases in total population (OR = 1.178, 95% CI: 1.022–1.357 for G vs. E and OR = 1.207, 95% CI: 1.031–1.411 for GG+EG vs. EE, respectively) (Table 3 and Figure 1). When restricted the analysis to the studies with control groups’ genotype frequency distribution were met with HWE, we observed an elevated risk of allergic diseases among subjects carrying EG or GG genotypes, in comparison with EE genotype carriers (OR = 1.225, 95% CI: 1.041–1.442) (Table 3 and Figure 1). When stratified analyses were conducted by ethnicity, we found an increased risk of allergic diseases in subjects carrying EG or GG genotypes, compared with EE genotype carries in Asians (OR = 1.189, 95% CI: 1.001–1.412) (Table 3 and Figure 2). No significant association of E237G polymorphism with allergic diseases risk was observed in Caucasians (OR = 1.544, 95% CI: 0.884–2.697 for G allele vs. E allele and OR = 1.547, 95% CI: 0.895–2.673 for EG+GG vs. EE, respectively) (Table 3 and Figure 2). In subgroup analyses by allergic diseases classification (asthma, allergic rhinitis, and both), we did not observe significant association of E237G with any allergic diseases categories (Table 3 and Figure 3).

Figure 1
Forest plots for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by HWE)
Figure 1
Forest plots for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by HWE)
Close modal
Figure 2
Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by ethnicity)
Figure 2
Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by ethnicity)
Close modal
Figure 3
Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by allergy category)
Figure 3
Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by allergy category)
Close modal
Table 3
Summary ORs for the association between FcεRIβ E273G polymorphism and allergic diseases risk
ComparisonsSample sizeNumber of studiesHypothesis testsHeterogeneity testsPublication bias test (P)
Case/controlOR (95% CI)ZPχ2 (df)PI2 (%)Begg’s testEgger’s test
Overall 
G vs. E 14552/14956 35 1.178 (1.022–1.357) 2.25 0.024 84.83 (34) <0.001 59.9 0.028 0.025 
GG+GE vs. EE 7276/7478 35 1.207 (1.031–1.411) 2.35 0.019 82.95 (34) <0.001 59.0 0.024 0.008 
Stratification by ethnicity 
Asians 
G vs. E 10694/10080 25 1.158 (0.994–1.350) 1.88 0.060 65.83 (24) <0.001 63.5 0.176 0.122 
GG+GE vs. EE 5347/5040 25 1.189 (1.001–1.412) 1.98 0.048 64.41 (24) <0.001 62.7 0.148 0.046 
Caucasians 
G vs. E 3576/3820 1.544 (0.884–2.697) 1.53 0.126 19.63 (7) 0.006 64.3 0.026 0.028 
GG+GE vs. EE 1788/1910 1.547 (0.895–2.673) 1.56 0.118 18.02 (7) 0.012 61.1 0.026 0.028 
Stratification by atopic disease categories 
Asthma 
G vs. E 12660/13324 31 1.148 (0.994–1.326) 1.88 0.060 72.22 (30) <0.001 58.5 0.051 0.081 
GG+GE vs. EE 6330/6662 31 1.164 (0.994–1.364) 1.89 0.059 69.11 (30) <0.001 56.6 0.047 0.031 
Allergic rhinitis 
G vs. E 764/1252 0.680 (0.124–3.737) 0.44 0.657 7.30 (1) 0.007 86.3 0.317 
GG+GE vs. EE 382/626 0.740 (0.103–5.324) 0.30 0.765 9.20 (1) 0.002 89.1 0.317 
Asthma and/or allergic rhinitis 
G vs. E 1128/1432 2.955 (0.616–14.181) 1.35 0.176 10.60 (2) 0.005 81.1 0.117 0.449 
GG+GE vs. EE 564/716 2.796 (0.646–12.109) 1.37 0.169 9.01 (2) 0.011 77.8 0.117 0.451 
Stratification by HWE 
Yes 
G vs. E 13122/13122 32 1.211 (1.046–1.403) 2.55 0.011 76.29 (31) <0.001 59.4 0.009 0.008 
GG+GE vs. EE 6561/6561 32 1.225 (1.041–1.442) 2.44 0.015 75.76 (31) <0.001 59.1 0.011 0.004 
ComparisonsSample sizeNumber of studiesHypothesis testsHeterogeneity testsPublication bias test (P)
Case/controlOR (95% CI)ZPχ2 (df)PI2 (%)Begg’s testEgger’s test
Overall 
G vs. E 14552/14956 35 1.178 (1.022–1.357) 2.25 0.024 84.83 (34) <0.001 59.9 0.028 0.025 
GG+GE vs. EE 7276/7478 35 1.207 (1.031–1.411) 2.35 0.019 82.95 (34) <0.001 59.0 0.024 0.008 
Stratification by ethnicity 
Asians 
G vs. E 10694/10080 25 1.158 (0.994–1.350) 1.88 0.060 65.83 (24) <0.001 63.5 0.176 0.122 
GG+GE vs. EE 5347/5040 25 1.189 (1.001–1.412) 1.98 0.048 64.41 (24) <0.001 62.7 0.148 0.046 
Caucasians 
G vs. E 3576/3820 1.544 (0.884–2.697) 1.53 0.126 19.63 (7) 0.006 64.3 0.026 0.028 
GG+GE vs. EE 1788/1910 1.547 (0.895–2.673) 1.56 0.118 18.02 (7) 0.012 61.1 0.026 0.028 
Stratification by atopic disease categories 
Asthma 
G vs. E 12660/13324 31 1.148 (0.994–1.326) 1.88 0.060 72.22 (30) <0.001 58.5 0.051 0.081 
GG+GE vs. EE 6330/6662 31 1.164 (0.994–1.364) 1.89 0.059 69.11 (30) <0.001 56.6 0.047 0.031 
Allergic rhinitis 
G vs. E 764/1252 0.680 (0.124–3.737) 0.44 0.657 7.30 (1) 0.007 86.3 0.317 
GG+GE vs. EE 382/626 0.740 (0.103–5.324) 0.30 0.765 9.20 (1) 0.002 89.1 0.317 
Asthma and/or allergic rhinitis 
G vs. E 1128/1432 2.955 (0.616–14.181) 1.35 0.176 10.60 (2) 0.005 81.1 0.117 0.449 
GG+GE vs. EE 564/716 2.796 (0.646–12.109) 1.37 0.169 9.01 (2) 0.011 77.8 0.117 0.451 
Stratification by HWE 
Yes 
G vs. E 13122/13122 32 1.211 (1.046–1.403) 2.55 0.011 76.29 (31) <0.001 59.4 0.009 0.008 
GG+GE vs. EE 6561/6561 32 1.225 (1.041–1.442) 2.44 0.015 75.76 (31) <0.001 59.1 0.011 0.004 

Abbreviation: df, degree of freedom.

We also performed a cumulative meta-analysis which accumulated the evidence about association of E237G variant with allergic diseases risk in the order of publication year of individual study. We observed that the association of EG/GG genotypes with increased allergic diseases started to become significant for the first time when Zeng et al.’s [28] study published in the year of 2001 (OR = 1.374, 95% CI: 1.013–1.864) and the summary OR became very similar to the OR estimated in this report (OR = 1.207) when Wang et al.’s [39] study published in the year of 2009 (OR = 1.299, 95% CI: 1.026–1.644) (Figure 4).The overall tendency of summary OR variation seemed alarming at the top of forest plot of the cumulative meta-analysis. It should be noted that Shirakawa et al. [2] (study 1) reported the first positive association of 237EG+GG with asthma risk with OR being equal to 2.693 in a Japanese (Asian) population and the second included study [3] with two independent case–control studies [one in black (study 2) and one in white (study 3)] reported different associations, one is negative association of 237EG+GG with asthma risk in Black (OR = 0.763) and the other is similar to Shirakawa et al.’s result in White population (OR = 3.693). When merging the result of study 1 with study 2, the overall OR significantly decreased. And when summarizing the results of the first three studies (i.e. study 1, 2, and 3) the overall OR looked bigger than the second. As a result, the overall ORs would generate a V-form change in the forest plot of cumulative meta-analysis. The alarming changes in the plot of cumulative meta-analysis also indicated that there was high heterogeneity of the results of the included individual studies.

Figure 4
Forest plot of cumulative meta-analysis for the association of FcεRIβ E237G polymorphism with allergic diseases risk
Figure 4
Forest plot of cumulative meta-analysis for the association of FcεRIβ E237G polymorphism with allergic diseases risk
Close modal

Sensitivity analysis was performed by sequentially omitting each individual study in the order of publication year and the pooled ORs were estimated repeatedly, which was used to evaluate the stability of the results of present meta-analysis. The sensitivity analysis showed that the association of EG and GG genotypes with increased risk of allergic diseases maintained statistically significant when removing any each individual study (Figure 5). Egger’s regression test and Begg’s rank correlation test were used to evaluate the small-study effects and potential publication bias in current meta-analysis. Both tests indicated that the significant association of G allele or EG+GG genotypes with elevated risk of allergic diseases might strongly influenced by small-study effect or publication bias (Table 3). The Egger’s funnel plots for the association between E237G polymorphism and allergic diseases risk also showed that the OR distributions for both G allele vs. E allele (Figure 6A) and EG+GG vs.EE (Figure 6B) were obviously asymmetrical.

Figure 5
Sensitivity analysis for the association between FcεRIβ E237G polymorphism and allergic diseases risk
Figure 5
Sensitivity analysis for the association between FcεRIβ E237G polymorphism and allergic diseases risk
Close modal
Figure 6
Egger’s funnel plots for the association between FcεRIβ E237G polymorphism and allergic diseases risk

(A) G allele vs. E allele; (B) EG/GG genotypes vs. EE genotype.

Figure 6
Egger’s funnel plots for the association between FcεRIβ E237G polymorphism and allergic diseases risk

(A) G allele vs. E allele; (B) EG/GG genotypes vs. EE genotype.

Close modal

There are some inherent limitations of meta-analysis which should be taken into consideration when using the results of this comment. First, there was high heterogeneity in this meta-analysis, especially in the case of association of E237G variant with allergic diseases risk. Although, subgroup analyses were performed on the basis of ethnicity, allergic disease category and HWE, heterogeneity among the included studies still be statistically significant in all subgroups. Second, publication bias tests indicated that the probable existence of publication bias, i.e. some unpublished negative results studies thus could not be included in this analyses might result in an over-estimated association of E237G with allergic disease risk.

In conclusion, the results of Guo et al.’s study [1] should be interpreted with caution. To make an asserted conclusion, well-designed studies with large number of homogeneous population are required. We do hope that this comment will be helpful to clarify the results presented by Guo et al. [1].

The authors declare that there are no competing interests associated with the manuscript.

This work was supported by the Key Program of Science and Technology Research Project from the Department of Education of Hubei Province [grant number D20192001].

H.Y.: designed the study, performed the statistical analysis and edited the manuscript. L.Z.: conducted literature search and extracted data from individual studies. Y.Z. and M.Y.: prepared and reviewed the manuscript. S.W.: conducted literature search and data checking. All authors approved the final manuscript.

CI

confidence interval

FcεRIβ

high-affinity IgE receptor β chain

HWE

Hardy–Weinberg equilibrium

OR

odds ratio

1.
Guo
H.
,
Peng
T.
,
Luo
P.
,
Li
H.
,
Huang
S.
,
Li
S.
et al.
(
2018
)
Association of FcepsilonRIbeta polymorphisms with risk of asthma and allergic rhinitis: evidence based on 29 case-control studies
.
Biosci. Rep.
38
,
1
16
2.
Shirakawa
T.
,
Mao
X.Q.
,
Sasaki
S.
,
Enomoto
T.
,
Kawai
M.
,
Morimoto
K.
et al.
(
1996
)
Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population
.
Hum. Mol. Genet.
5
,
1129
1130
[PubMed]
3.
Green
S.L.
,
Gaillard
M.C.
,
Song
E.
,
Dewar
J.B.
and
Halkas
A.
(
1998
)
Polymorphisms of the beta chain of the high-affinity immunoglobulin E receptor (Fcepsilon RI-beta) in South African black and white asthmatic and nonasthmatic individuals
.
Am. J. Respir. Crit. Care Med.
158
,
1487
1492
[PubMed]
4.
Rohrbach
M.
,
Kraemer
R.
and
Liechti-Gallati
S.
(
1998
)
Screening of the Fc epsilon RI-beta-gene in a Swiss population of asthmatic children: no association with E237G and identification of new sequence variations
.
Dis. Markers
14
,
177
186
[PubMed]
5.
Dickson
P.W.
,
Wong
Z.Y.
,
Harrap
S.B.
,
Abramson
M.J.
and
Walters
E.H.
(
1999
)
Mutational analysis of the high affinity immunoglobulin E receptor beta subunit gene in asthma
.
Thorax
54
,
409
412
[PubMed]
6.
Ishizawa
M.
,
Shibasaki
M.
,
Yokouchi
Y.
,
Noguchi
E.
,
Arinami
T.
,
Yamakawa-Kobayashi
K.
et al.
(
1999
)
No association between atopic asthma and a coding variant of Fc epsilon R1 beta in a Japanese population
.
J. Hum. Genet.
44
,
308
311
[PubMed]
7.
Sharma
S.
,
Nagarkatti
R.
,
B-Rao
C.
,
Niphadkar
P.V.
,
Vijayan
V.
,
Sharma
S.K.
et al.
(
2004
)
A_16_C haplotype in the FcepsilonRIbeta gene confers a higher risk for atopic asthma in the Indian population
.
Clin. Genet.
66
,
417
425
[PubMed]
8.
Kim
S.H.
,
Bae
J.S.
,
Holloway
J.W.
,
Lee
J.T.
,
Suh
C.H.
,
Nahm
D.H.
et al.
(
2006
)
A polymorphism of MS4A2 (- 109T >C) encoding the beta-chain of the high-affinity immunoglobulin E receptor (FcepsilonR1beta) is associated with a susceptibility to aspirin-intolerant asthma
.
Clin. Exp. Allergy
36
,
877
883
[PubMed]
9.
Li
M.
,
Du
Q.
,
Li
L.
,
Song
L.
and
Li
B.
(
2006
)
Gene mutation of high affinity immunoglobulin E receptor beta-chain in children with asthma
.
Zhongguo Dang Dai Er Ke Za Zhi
8
,
453
456
[PubMed]
10.
Undarmaa
S.
,
Mashimo
Y.
,
Hattori
S.
,
Shimojo
N.
,
Fujita
K.
,
Miyatake
A.
et al.
(
2010
)
Replication of genetic association studies in asthma and related phenotypes
.
J. Hum. Genet.
55
,
342
349
[PubMed]
11.
Murk
W.
,
Walsh
K.
,
Hsu
L.I.
,
Zhao
L.
,
Bracken
M.B.
and
Dewan
A.T.
(
2011
)
Attempted replication of 50 reported asthma risk genes identifies a SNP in RAD50 as associated with childhood atopic asthma
.
Hum. Hered.
71
,
97
105
[PubMed]
12.
Ungvari
I.
,
Hullam
G.
,
Antal
P.
,
Kiszel
P.S.
,
Gezsi
A.
,
Hadadi
E.
et al.
(
2012
)
Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance
.
PLoS ONE
7
,
e33573
[PubMed]
13.
Chen
X.Z.
(
2014
)
Value of asthma-susceptibility genes non-invasive detection in early diagnosis of children with asthma
.
Shi Yong Lin Chuan Yi Yao Za Zhi
18
,
94
96
14.
Wan
L.S.
,
Wen
P.Q.
,
Li
J.X.
,
Ma
D.L.
,
Cui
D.
and
Wang
S.
(
2014
)
The highaffinity receptor for Immunoglobulin E MS4A2 gene single-nucleotide polymorphism analysis of qi deficiency asthma patients
.
Zhongguo You Sheng Yu Yi Chuan Za Zhi
22
,
21
22
15.
Yang
Y.H.
,
Li
Y.
and
Lu
Y.Q.
(
2017
)
Association of ADRB2 and MS4A2 gene polymorphisms with asthma
.
Zhongguo Fu You Bao Jian
32
,
1254
1255
16.
Cui
T.P.
,
Jiang
W.C.
,
Wang
L.
,
Xie
J.G.
and
Wu
J.M.
(
2004
)
Association analysis of FcεRI-β gene with allergic asthma in Chinese
.
Zhongguo Bing Li Sheng Li Za Zhi
20
,
2049
2052
17.
Cui
T.
,
Wang
L.
,
Wu
J.
and
Xie
J.
(
2003
)
The association analysis of FcepsilonRIbeta with allergic asthma in a Chinese population
.
Chin. Med. J. (Engl.)
116
,
1875
1878
[PubMed]
18.
Hua
L.
,
Dong
X.Y.
,
Liu
Q.H.
,
Lv
J.
and
Bao
Y.X.
(
2009
)
Single-nucleotide polymorphisms in genes predisposing to asthma in children of Chinese Han nationality
.
J. Investig. Allergol. Clin. Immunol.
19
,
391
395
,
[PubMed]
19.
Hua
L.
,
Zuo
X.B.
,
Bao
Y.X.
,
Liu
Q.H.
,
Li
J.Y.
,
Lv
J.
et al.
(
2016
)
Four-locus gene interaction between IL13, IL4, FCER1B, and ADRB2 for asthma in Chinese Han children
.
Pediatr. Pulmonol.
51
,
364
371
[PubMed]
20.
Ramphul
K.
,
Lv
J.
,
Hua
L.
,
Liu
Q.H.
,
Fang
D.Z.
,
Ji
R.X.
et al.
(
2014
)
Single nucleotide polymorphisms predisposing to asthma in children of Mauritian Indian and Chinese Han ethnicity
.
Braz. J. Med. Biol. Res.
47
,
394
397
[PubMed]
21.
Laprise
C.
,
Boulet
L.P.
,
Morissette
J.
,
Winstall
E.
and
Raymond
V.
(
2000
)
Evidence for association and linkage between atopy, airway hyper-responsiveness, and the beta subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population
.
Immunogenetics
51
,
695
702
[PubMed]
22.
Sharma
S.
and
Ghosh
B.
(
2009
)
Promoter polymorphism in the MS4A2 gene and asthma in the Indian population
.
Int. Arch. Allergy Immunol.
149
,
208
218
[PubMed]
23.
Amo
G.
,
García-Menaya
J.
,
Campo
P.
,
Cordobés
C.
,
Plaza Serón
M.C.
,
Ayuso
P.
et al.
(
2016
)
A nonsynonymous FCER1B SNP is associated with risk of developing allergic rhinitis and with IgE levels
.
Sci. Rep.
6
,
19724
[PubMed]
24.
Chen
H.
,
Chen
Y.
and
Hu
L.
(
2000
)
Study on the FcepsilonRI-beta polymorphism and susceptibility of asthma in a Chinese population
.
Zhonghua Yi Xue Za Zhi
80
,
664
667
[PubMed]
25.
Soriano
J.B.
,
de Cid
R.
,
Estivill
X.
,
Anto
J.M.
,
Sunyer
J.
,
Otero
D.
et al.
(
2000
)
Association study of proposed candidate genes/regions in a population of Spanish asthmatics
.
Eur. J. Epidemiol.
16
,
745
750
[PubMed]
26.
Takabayashi
A.
,
Ihara
K.
,
Sasaki
Y.
,
Suzuki
Y.
,
Nishima
S.
,
Izuhara
K.
et al.
(
2000
)
Childhood atopic asthma: positive association with a polymorphism of IL-4 receptor alpha gene but not with that of IL-4 promoter or Fc epsilon receptor I beta gene
.
Exp. Clin. Immunogenet.
17
,
63
70
[PubMed]
27.
Nagata
H.
,
Mutoh
H.
,
Kumahara
K.
,
Arimoto
Y.
,
Tomemori
T.
,
Sakurai
D.
et al.
(
2001
)
Association between nasal allergy and a coding variant of the Fc epsilon RI beta gene Glu237Gly in a Japanese population
.
Hum. Genet.
109
,
262
266
[PubMed]
28.
Zeng
L.X.
,
Zhou
S.J.
,
Kuang
J.L.
and
Rao
W.H.
(
2001
)
Study of mutation of β chain gene E237G, a high affinity receptor of IgE in asthmatics
.
Jiangxi Xi Yue Yue Xue Bao
41
,
43
45
29.
Gan
X.
,
Kuang
J.L.
,
Zou
X.Q.
and
Rao
W.H.
(
2004
)
Study on the relationship between IgE high affinity receptor beta chain gene polymorphism and serum total IgE in patients with bronchial asthma
.
Zhonghua Jie He He Hu Xi Za Zhi
27
,
704
705
30.
Korzycka-Zaborowska
B.
,
Hopkin
J.M.
and
Gorski
P.
(
2004
)
Genetic variants of FcepsilonRIbeta and Il-4 and atopy in a Polish population
.
Allergol. Immunopathol. (Madr.)
32
,
53
58
[PubMed]
31.
Rigoli
L.
,
Di Bella
C.
,
Procopio
V.
,
Barberio
G.
,
Barberi
I.
,
Caminiti
L.
et al.
(
2004
)
Molecular analysis of sequence variants in the Fcepsilon receptor I beta gene and IL-4 gene promoter in Italian atopic families
.
Allergy
59
,
213
218
[PubMed]
32.
Zhang
X.
,
Zhang
W.
,
Qiu
D.
,
Sandford
A.
and
Tan
W.C.
(
2004
)
The E237G polymorphism of the high-affinity IgE receptor beta chain and asthma
.
Ann. Allergy. Asthma. Immunol.
93
,
499
503
[PubMed]
33.
Zhao
K.S.
,
Chen
H.J.
,
Qiao
H.M.
,
Zhao
F.X.
,
Sun
M.Y.
and
Fu
W.Y.
(
2004
)
Analysis of gene mutation for high affinity immunoglobulin E receptor chain in asthmatic children
.
Lin Chuang Er Ke Za Zhi
22
,
794
797
34.
Zhao
K.S.
,
Lu
J.R.
,
Wang
Z.H.
,
Guo
Y.
,
Yu
L.Y.
and
Fu
W.Y.
(
2004
)
Association between FcεRI-β gene promoter polymorphism and total serum IgE levels of asthma in children
.
Zhongguo Shi Yong Er Ke Za Zhi
19
,
744
746
35.
Hizawa
N.
,
Maeda
Y.
,
Konno
S.
,
Fukui
Y.
,
Takahashi
D.
and
Nishimura
M.
(
2006
)
Genetic polymorphisms at FCER1B and PAI-1 and asthma susceptibility
.
Clin. Exp. Allergy
36
,
872
876
[PubMed]
36.
Liu
T.
,
Teng
L.
,
Guan
L.X.
,
Wu
L.P.
and
Sun
K.Y.
(
2006
)
Study on the E237G polymorphism of the FcepsilonRI beta gene with asthma
.
Zhongguo Shi Yong Nei Ke Za Zhi
26
,
1520
1522
37.
Potaczek
D.P.
,
Sanak
M.
and
Szczeklik
A.
(
2007
)
Additive association between FCER1A and FCER1B genetic polymorphisms and total serum IgE levels
.
Allergy
62
,
1095
1096
[PubMed]
38.
Kim
E.S.
,
Kim
S.H.
,
Kim
K.W.
,
Park
H.S.
,
Shin
E.S.
,
Lee
J.E.
et al.
(
2009
)
Involvement of Fc(epsilon)R1beta gene polymorphisms in susceptibility to atopy in Korean children with asthma
.
Eur. J. Pediatr.
168
,
1483
1490
[PubMed]
39.
Wang
J.Y.
,
Liou
Y.H.
,
Wu
Y.J.
,
Hsiao
Y.H.
and
Wu
L.S.
(
2009
)
An association study of 13 SNPs from seven candidate genes with pediatric asthma and a preliminary study for genetic testing by multiple variants in Taiwanese population
.
J. Clin. Immunol.
29
,
205
209
[PubMed]
40.
Tikhonova
V.
,
Voitovich
A.
,
Korostovsev
D.
and
Larionova
V.
(
2010
)
The -109C>T polymorphism of the FCER1B gene in children with asthma
.
Pediatr. Res.
68
,
413
41.
Dmitrieva-Zdorova
E.V.
,
Voronko
O.E.
,
Latysheva
E.A.
,
Storozhakov
G.I.
and
Archakov
A.I.
(
2012
)
Analysis of polymorphisms in T(H)2-associated genes in Russian patients with atopic bronchial asthma
.
J. Investig. Allergol. Clin. Immunol.
22
,
126
132
,
[PubMed]
42.
Zheng
B.Q.
,
Wang
G.L.
,
Yang
S.
,
Lu
Y.Q.
,
Liu
R.J.
and
Li
Y.
(
2012
)
Study of genetic susceptibility in 198 children with asthma
.
Zhongguo Dang Dai Er Ke Za Zhi
14
,
811
814
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).