Backgrounds: Some studies have reported association of circulating fibrinogen with the risk of chronic obstructive pulmonary disease (COPD), and the results are conflicting. To yield more information, we aimed to test the hypothesis that circulating fibrinogen is a promising biomarker for COPD by a meta-analysis.

Methods: Data extraction and quality assessment were independently completed by two authors. Effect-size estimates are expressed as weighted mean difference (WMD) with 95% confidence interval (95% CI).

Results: Forty-five articles involving 5586/18604 COPD patients/controls were incorporated. Overall analyses revealed significantly higher concentrations of circulating fibrinogen in COPD patients than in controls (WMD: 84.67 mg/dl; 95% CI: 64.24–105.10). Subgroup analyses by COPD course showed that the degree of increased circulating fibrinogen in patients with acute exacerbations of COPD (AECOPD) relative to controls (WMD: 182.59 mg/dl; 95% CI: 115.93–249.25) tripled when compared in patients with stable COPD (WMD: 56.12 mg/dl; 95% CI: 34.56–77.67). By COPD severity, there was a graded increase in fibrinogen with the increased severity of COPD relative to controls (Global Initiative for Obstructive Lung Disease (GOLD) I, II, III, and IV: WMD: 13.91, 29.19, 56.81, and 197.42 mg/dl; 95% CI: 7.70–20.11, 17.43–40.94, 39.20–74.41, and −7.88 to 402.73, respectively). There was a low probability of publication bias.

Conclusion: Our findings indicate a graded, concentration-dependent, significant relation between higher circulating fibrinogen and more severity of COPD.

Chronic obstructive pulmonary disease (COPD) is an escalating public health problem that affected more than 174.5 million adults in 2015 worldwide [1]. At present, COPD ranks as the third leading cause of mortality [2], and is responsible for approximately 3 million deaths annually [2,3]. Given that COPD can impair the quality of life by causing progressive reduction in lung function, loss of exercise capacity, increase in hospital admissions, and premature mortality [4]. COPD prevention represents an important public health goal. Because COPD is a progressive lung disease, the identification of biomarkers for early detection of COPD may help to improve future respiratory health.

It is widely recognized that systemic inflammation is an important clinical feature of COPD [5,6]. Much attention has been focused on the potential implication of circulating inflammatory biomarkers in the development of COPD. One of the most widely evaluated inflammatory biomarkers is fibrinogen, a key modulator of inflammation and fibrosis development, as well as tissue injury [7]. The association between circulating fibrinogen and COPD risk has been investigated by a large number of studies, with inconsistent and inconclusive findings. For example, some researchers have reported a significantly higher concentration of circulating fibrinogen in COPD patients than healthy controls [8–10], whereas others found that circulating fibrinogen concentration was comparable between the two groups [11], and even a significantly higher concentration in controls [12,13]. In a recent umbrella review of meta-analyses, Bellou and colleagues synthesized observational data on environmental factors and biomarkers in possible association with COPD, and found that circulating fibrinogen was a promising clinical marker of COPD, yet with very large heterogeneity [14]. Despite the significant heterogeneity, plasma fibrinogen this year has been qualified as a COPD biomarker for severity assessment in the United States by the Food and Drug Administration (FDA) [15]. Kirkpatrick and Dransfield have written an excellent review, and demonstrated that race may influence COPD susceptibility and progression [16]. It is hence reasonable to speculate that such very high heterogeneity is likely attributed to racial differences. Besides, other possible reasons such as different study designs and individually underpowered studies also account for this issue. However, the reasons behind inconsistence and heterogeneity when assessing the relationship between circulating fibrinogen and COPD thus far remains unexplored.

To fill this gap in our knowledge and generate more information for future studies, we prepared a comprehensive meta-analysis of published observational studies to test the hypothesis that circulating fibrinogen is a promising biomarker for COPD, and if this hypothesis is confirmed, we further examined whether circulating fibrinogen is associated with the severity of COPD in a concentration-dependent fashion.

We conducted this meta-analysis of observational studies in compliance with the requirements of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [17]. The PRISMA checklist is provided in Supplementary Table S1.

Search strategy

A systematic electronic search of PubMed, EMBASE (Excerpt Medica Database), Cochrane Central Register of Controlled Trials, and Web of Science was conducted from inception to 25 June 2019 for publications that assessed the relationship between circulating fibrinogen and COPD. The key terms used for search included ‘fibrinogen’, ‘FIB’, ‘chronic obstructive pulmonary disease’, and ‘COPD’.

Literature search was restricted to articles published in the English language from peer-reviewed journals. Additional articles were obtained via manually scanning the reference lists of relevant reviews and major original articles. Literature search was independently completed by two authors (B.Z. and W.N.), and divergences were resolved by discussion until a consensus was reached.

Eligibility criteria

Articles were included if they were observational case–control studies, and if they had mean or median values of circulating fibrinogen concentration in both COPD patients and controls, along with standard deviation or standard error or interquartile range or whole range. Articles were excluded if they lacked control groups, or if they published in form of reviews, case reports, case series, conference abstracts, letter to the editor, comments, or editorials.

Article selection

Two authors (B.Z. and W.N.) independently screened the titles and abstracts of all retrieved articles, and if necessary the full texts to assess their eligibility. If more than one article was published from the same or part of study participants, the article with the largest sample size was retained in the analysis. Any disagreement was discussed, and when necessary, adjudicated by a third author (Z.Z.).

Data extraction

Data from qualified articles were independently extracted by two authors (B.Z. and W.N.), including surname of first author, year of publication, country where the study was conducted, sample size, study type, COPD and its stages, circulating concentrations of fibrinogen in both patients and controls, and necessary baseline characteristics, if available. Extracted data from the two authors were checked for consistency using κ statistic, and any divergences were resolved by a third author (Z.Z.).

Quality assessment

The quality assessment tool, the 9-star Newcastle–Ottawa Scale, was employed [18]. This scale ranges from 0 (the worst) to 9 stars (the best). The following three major study components were judged: selection (0–4 stars), comparability (0–2 stars), and exposure/outcome (0–3 stars).

Statistical analyses

The STATA software Release 14.1 (Stata Corp, College Station, TX) was used for statistical analyses. The difference in circulating fibrinogen concentration between COPD patients and healthy controls is expressed as weighted mean difference (WMD) and 95% confidence interval (95% CI) under the random-effects model using the DerSimonian and Laird method [19]. Heterogeneity is judged by the χ2 test and quantified by the inconsistency index (I2) statistic, which ranges from 0 to 100%. Heterogeneity is statistically significant if the probability of χ2 test is less than 10% or I2 is over 50%. To explore potential sources of heterogeneity, subgroup analyses were conducted according to COPD course (stable and acute exacerbations), COPD severity (Global Initiative for Obstructive Lung Disease (GOLD) I, GOLD II, GOLD III, and GOLD IV), smoking habit in controls, region, sample size and study type, and meta-regression analyses were further conducted to assess the confounding impact of age and gender.

Cumulative analyses were done to assess the impact of first published study on subsequent studies and evolution of accumulated estimates over time. Influential analyses were used to assess the contribution of single study to overall estimate.

Publication bias was evaluated by the Begg’s funnel plots and the Egger’s tests at a significance level of 10% [20]. The trim and fill method was used to predict the number of potentially missing studies and derive the ‘unbiased’ estimates.

Eligible articles

In total, 298 potentially relevant articles were identified after literature search for observational studies on circulating fibrinogen and COPD. On the basis of titles and abstracts, 187 articles were excluded with obvious reasons, leaving 111 articles for further evaluation in full texts. Finally, there were 45 articles in this meta-analysis [8–13,21–59], involving 5586 COPD patients and 18604 controls, and all articles were published from the year 1997 to 2019. Because two articles respectively provided data in COPD patients as a whole [46] and by COPD severity (stable and acute exacerbations) [9] based on the same study participants, we combined results from the two articles as a single study. So, a total of 44 studies were synthesized in this meta-analysis. The specific reasons for exclusion during article selection are provided in Figure 1.

Flow diagram illustrating the selection of qualified studies with specific reasons for exclusion

Figure 1
Flow diagram illustrating the selection of qualified studies with specific reasons for exclusion
Figure 1
Flow diagram illustrating the selection of qualified studies with specific reasons for exclusion

Characteristics of qualified studies

Shown in Table 1 are the characteristics of all qualified studies. There were 14 studies enrolling patients with stable COPD, 11 studies with COPD exacerbations, and 9 studies with different COPD stages according to the GOLD guidelines. Eleven studies enrolled smokers as controls, and ten studies enrolled non-smokers as controls. The mean or median age of study participants ranged from 55 to 75 years. The sample size ranged from 16 to 1755.

Table 1
The baseline characteristics of qualified studies in this meta-analysis
First authorYearRegionPatientsControlsSample sizeGender (M/F)Age (years)Smoke pack-yearsFibrinogen (mg/dl) in patientsFibrinogen (mg/dl) in controls
Ronnow 2019 Europe COPD Smokers 95/95 49/49 60/59.4 38/30 356.4 ± 75.85 343.4 ± 53.78 
Ronnow 2019 Europe COPD Non-smokers 95/95 49/49 60/58.8 38/0 356.4 ± 75.85 326.6 ± 65.3 
Olloquequi 2019 America COPD Healthy 49/52 29/71 69.41/70.34 41.57/0 392.22 ± 106.38 319.81 ± 70.52 
Jin 2018 Asia COPD Healthy 134/125 39.6/45.6 64.5/63.8 32/31.6 540 ± 80 250 ± 50 
Aleva 2018 Europe Stable COPD Healthy 30/25 53.7/64 61.6/53 50.7/1.6 331.4 ± 141.9 305.1 ± 122.5 
AboEI-Magd 2018 Africa AECOPD Healthy 45/20 31.1/35 57.71/56.65 39.62/31 567.3 ± 216.6 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD I/II Healthy 23/20 31.1/35 57.71/56.65 39.62/31 443.47 ± 107.98 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD III Healthy 13/20 31.1/35 57.71/56.65 39.62/31 595.38 ± 229.98 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD IV Healthy 9/20 31.1/35 57.71/56.65 39.62/31 843.33 ± 125 315.38 ± 68.18 
Zeng 2017 Asia COPD Healthy 106/106 12.26/12.26 69.48/69.27 NA 429 ± 160 250 ± 54 
Ugurlu 2017 Asia AECOPD Healthy 16/12 NA NA NA 446.44 ± 193.65 321.18 ± 115.24 
Ugurlu 2017 Asia Stable COPD Healthy 13/12 NA NA NA 292.27 ± 74.51 321.18 ± 115.24 
Lopez-Sanchez 2017 Europe Stable COPD Healthy 35/11 8.6/18.2 66.3/65.4 50/10 490 ± 133.3 310 ± 37.04 
Golpe 2017 Europe COPD Healthy 20/20 25/25 70.1/NA 62.8/NA 387 ± 88.15 328 ± 40.74 
Diao 2017 Asia Stable COPD Smokers 53/33 NA 64/58 38/31 330 ± 80 270 ± 70 
Diao 2017 Asia GOLD I Smokers 10/33 NA 66/58 39/31 310 ± 54 270 ± 70 
Diao 2017 Asia GOLD II Smokers 15/33 NA 63/58 38/31 330 ± 100 270 ± 70 
Diao 2017 Asia GOLD III Smokers 19/33 NA 64/58 38/31 350 ± 66 270 ± 70 
Diao 2017 Asia GOLD IV Smokers 9/33 NA 62/58 39/31 360 ± 100 270 ± 70 
Arellano-Orden 2017 Europe COPD Smokers 96/33 0/0 67/58 71.9/46.9 520.5 ± 126.4 595 ± 133.3 
Zhang 2016 Asia Stable COPD Healthy 43/43 20.9/23.3 62.3/60.8 47.3/43.9 297 ± 34.3 271 ± 66.8 
Zhang 2016 Asia AECOPD Healthy 43/43 20.9/23.3 62.3/60.8 47.3/43.9 352 ± 81.3 271 ± 66.8 
Golpe 2016 Europe COPD Smokers 67/67 22.4/22.4 59.4/58.2 52.7/43.7 378.4 ± 69.6 352.2 ± 45.6 
Akiki 2016 Asia COPD Healthy 90/180 42.2/63.5 62/55 NA 299.2 ± 104.8 313.5 ± 64.2 
Tudorache 2015 Europe Stable COPD Healthy 22/20 NA 63/63 NA 303 ± 70 262 ± 40 
Tudorache 2015 Europe AECOPD Healthy 19/20 NA 63/63 NA 584 ± 62 262 ± 40 
Stoll 2015 Europe COPD Smokers 54/21 38.9/38.1 59/61 38/39 420 ± 105 360 ± 72.5 
Stoll 2015 Europe COPD Non-smokers 54/21 38.9/42.9 59/63 38/0 420 ± 105 300 ± 60 
Mutlu 2015 Asia Stable COPD Healthy 29/29 16/10 68/64 NA 366 ± 128 345 ± 174 
Mutlu 2015 Asia AECOPD Healthy 29/29 16/10 65/64 NA 487 ± 245 345 ± 174 
Ishikawa 2015 Asia COPD Smokers 47/30 4.3/6.7 70.8/62.7 62.3/57.3 300 ± 100 303.5 ± 101.2 
Ishikawa 2015 Asia COPD Non-smokers 47/20 4.3/50 70.8/59 62.3/0.34 300 ± 100 289 ± 96.3 
Gumus 2015 Asia AECOPD Healthy 43/30 7/17 68/64 53/40 581.4 ± 353.7 237.8 ± 207.4 
Boyuk 2015 Asia COPD Non-smokers 43/38 44.2/NA NA NA 363.53 ± 93.36 356 ± 50.33 
Boyuk 2015 Asia GOLD I Non-smokers 9/38 NA 57.67/NA NA 361.89 ± 72.63 356 ± 50.33 
Boyuk 2015 Asia GOLD II Non-smokers 21/38 NA 65.14/NA NA 371.1 ± 92.41 356 ± 50.33 
Boyuk 2015 Asia GOLD III Non-smokers 13/38 NA 60.23/NA NA 352.46 ± 111.91 356 ± 50.33 
Pizarro 2014 Europe COPD Smokers 62/17 6/29 62/59 60/41 400 ± 96.3 390 ± 66.7 
Pizarro 2014 Europe COPD Non-smokers 62/18 6/61 62/58 60/0 400 ± 96.3 330 ± 74.1 
Gagnon 2014 America GOLD I Healthy 37/19 32/31 65/62 44/36 234 ± 63 345 ± 249 
Can 2014 Asia Stable COPD Healthy 46/41 13/26.8 55.92/52.41 39.63/5.56 406.77 ± 172.6 336.53 ± 96.1 
Can 2014 Asia GOLD II Healthy 17/41 13/26.8 55.92/52.41 39.63/5.56 354.06 ± 170.5 336.53 ± 96.1 
Can 2014 Asia GOLD III Healthy 15/41 13/26.8 55.92/52.41 39.63/5.56 397.55 ± 162.1 336.53 ± 96.1 
Can 2014 Asia GOLD IV Healthy 14/41 13/26.8 55.92/52.41 39.63/5.56 480.81 ± 192.7 336.53 ± 96.1 
Wang 2013 Asia Stable COPD Healthy 70/70 14.3/18.6 69/68 56.4/54.3 417.7 ± 91.4 366.7 ± 101.4 
Wang 2013 Asia AECOPD Healthy 70/70 14.3/18.6 69/68 56.4/54.3 466.1 ± 90.3 366.7 ± 101.4 
Lazzeri 2013 Europe COPD Healthy 71/747 33.8/26.8 74/67 54/46.1 434 ± 148.9 391 ± 98.5 
Waschki 2012 Europe COPD Smokers 127/22 39.20/45.5 64.6/68 38.3/27.2 504 ± 122 455 ± 129 
Waschki 2012 Europe COPD Non-smokers 127/22 39.20/68.2 64.6/66.4 38.3/0 504 ± 122 408 ± 57 
Lazovic 2012 Europe COPD Healthy 43/40 39.50/47.5 61.8/45.45 28.2/5.94 603 ± 229 414 ± 163 
Gopal 2012 Europe Stable COPD Healthy 146/81 45.90/44.4 59.56/58.78 36.37/35.41 351.8 ± 84.5 330 ± 30 
Cockayne 2012 America GOLD I/II Smokers 75/15 28/27 66.9/66.8 51.9/42.9 430 ± 74.1 460 ± 37 
Cockayne 2012 America GOLD III/IV Non-smokers 65/30 25/30 66.3/66.4 58.8/0.5 460 ± 81.5 370 ± 59.3 
Agusti 2012 Europe COPD Smokers 1755/297 34/45 63.5/55.5 48.9/31.7 448 ± 95.6 391 ± 65.2 
Agusti 2012 Europe COPD Non-smokers 1755/202 34/62 63.5/53 48.9/0.2 448 ± 95.6 369 ± 78.5 
Valvi 2012 America GOLD I Healthy 2669/7271 NA NA NA 309.5 ± 67.16 294.6 ± 59.69 
Valvi 2012 America GOLD II Healthy 2221/7271 NA NA NA 320.7 ± 70.69 294.6 ± 59.69 
Valvi 2012 America GOLD III/IV Healthy 585/7271 NA NA NA 336.8 ± 74.98 294.6 ± 59.69 
Dickens 2011 Europe COPD Smokers 201/37 27/32 64.5/60.7 45.7/29.3 466 ± 117.5 425 ± 100 
Dickens 2011 Europe COPD Non-smokers 201/37 27/62 64.5/60 45.7/0 466 ± 117.5 387 ± 83 
Dickens 2011 Europe Stable COPD Smokers 157/37 NA NA NA 464 ± 115 425 ± 100 
Dickens 2011 Europe AECOPD Non-smokers 33/37 NA NA NA 534 ± 156 387 ± 83 
Selcuk 2010 Asia COPD Healthy 85/39 40/41 58.4/57.8 28/22 332 ± 129 295 ± 73 
Garcia-Rio 2010 Europe COPD Healthy 324/110 26/54 64/55 40/10 347.8 ± 97.5 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD I Healthy 177/110 32.2/54 62/55 30/10 346 ± 104 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD II Healthy 128/110 18/54 67/55 45/10 363 ± 111 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD III Healthy 19/110 15.8/54 70/55 40/10 373 ± 117 312.3 ± 71.8 
Yanbaeva 2009 Europe COPD Healthy 355/195 38/52 64.2/54.3 39.9/29.6 360 ± 43.7 330 ± 44.4 
Watz 2009 Europe GOLD I Healthy 34/30 26/23 66.3/62.6 46.9/53.2 395 ± 64 410 ± 81 
Watz 2009 Europe GOLD II Healthy 57/30 28/23 63.3/62.6 50.7/53.2 431 ± 98 410 ± 81 
Watz 2009 Europe GOLD III Healthy 43/30 19/23 63.3/62.6 55.6/53.2 468 ± 115 410 ± 81 
Watz 2009 Europe GOLD IV Healthy 36/30 25/23 63.7/62.6 54/53.2 444 ± 89 410 ± 81 
Undas 2009 Europe Stable COPD Healthy 56/56 8.9/14.3 64.9/63.8 NA 408 ± 160 271 ± 57 
Valipour 2008 Europe Stable COPD Healthy 30/30 30/30 60/59 58/27 424 ± 74.8 360 ± 49.6 
Valipour 2008 Europe AECOPD Healthy 30/30 23/30 62/59 57/27 419 ± 104.4 360 ± 49.6 
Polatli 2008 Asia Stable COPD Healthy 33/16 NA 63.42/59.63 33.64/21.56 346.88 ± 92.3 289.99 ± 39.9 
Polatli 2008 Asia AECOPD Healthy 26/16 NA 68/59.63 45.04/21.56 447.67 ± 128 289.99 ± 39.9 
Kunter 2008 Asia AECOPD Non-smokers 30/10 13.3/NA 72.37/64.5 NA 623.77 ± 189.45 305.7 ± 77.73 
Higashimoto 2008 Asia COPD Healthy 111/75 2.7/2.7 74.9/64.5 61/41.2 340 ± 126.4 322 ± 103.9 
Eickhoff 2008 Europe COPD Smokers 60/20 45/60 62/59 66/39 426 ± 87.4 367 ± 51.1 
Eickhoff 2008 Europe COPD Non-smokers 60/20 45/65 62/62 66/0 426 ± 87.4 382 ± 82.2 
Dentener 2008 Europe COPD Healthy 16/25 37.5/52 62/56 28/15 244 ± 56 182 ± 30 
Mannino 2003 America GOLD I Healthy 1260/8446 NA NA NA 292 ± 51 281 ± 47 
Mannino 2003 America GOLD II Healthy 878/8446 NA NA NA 316 ± 58 281 ± 47 
Mannino 2003 America GOLD III/IV Healthy 228/8446 NA NA NA 340 ± 67 281 ± 47 
Ferroni 1997 Europe COPD Healthy 33/16 9/18.8 68/58 NA 342 ± 61 233 ± 44 
First authorYearRegionPatientsControlsSample sizeGender (M/F)Age (years)Smoke pack-yearsFibrinogen (mg/dl) in patientsFibrinogen (mg/dl) in controls
Ronnow 2019 Europe COPD Smokers 95/95 49/49 60/59.4 38/30 356.4 ± 75.85 343.4 ± 53.78 
Ronnow 2019 Europe COPD Non-smokers 95/95 49/49 60/58.8 38/0 356.4 ± 75.85 326.6 ± 65.3 
Olloquequi 2019 America COPD Healthy 49/52 29/71 69.41/70.34 41.57/0 392.22 ± 106.38 319.81 ± 70.52 
Jin 2018 Asia COPD Healthy 134/125 39.6/45.6 64.5/63.8 32/31.6 540 ± 80 250 ± 50 
Aleva 2018 Europe Stable COPD Healthy 30/25 53.7/64 61.6/53 50.7/1.6 331.4 ± 141.9 305.1 ± 122.5 
AboEI-Magd 2018 Africa AECOPD Healthy 45/20 31.1/35 57.71/56.65 39.62/31 567.3 ± 216.6 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD I/II Healthy 23/20 31.1/35 57.71/56.65 39.62/31 443.47 ± 107.98 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD III Healthy 13/20 31.1/35 57.71/56.65 39.62/31 595.38 ± 229.98 315.38 ± 68.18 
AboEI-Magd 2018 Africa GOLD IV Healthy 9/20 31.1/35 57.71/56.65 39.62/31 843.33 ± 125 315.38 ± 68.18 
Zeng 2017 Asia COPD Healthy 106/106 12.26/12.26 69.48/69.27 NA 429 ± 160 250 ± 54 
Ugurlu 2017 Asia AECOPD Healthy 16/12 NA NA NA 446.44 ± 193.65 321.18 ± 115.24 
Ugurlu 2017 Asia Stable COPD Healthy 13/12 NA NA NA 292.27 ± 74.51 321.18 ± 115.24 
Lopez-Sanchez 2017 Europe Stable COPD Healthy 35/11 8.6/18.2 66.3/65.4 50/10 490 ± 133.3 310 ± 37.04 
Golpe 2017 Europe COPD Healthy 20/20 25/25 70.1/NA 62.8/NA 387 ± 88.15 328 ± 40.74 
Diao 2017 Asia Stable COPD Smokers 53/33 NA 64/58 38/31 330 ± 80 270 ± 70 
Diao 2017 Asia GOLD I Smokers 10/33 NA 66/58 39/31 310 ± 54 270 ± 70 
Diao 2017 Asia GOLD II Smokers 15/33 NA 63/58 38/31 330 ± 100 270 ± 70 
Diao 2017 Asia GOLD III Smokers 19/33 NA 64/58 38/31 350 ± 66 270 ± 70 
Diao 2017 Asia GOLD IV Smokers 9/33 NA 62/58 39/31 360 ± 100 270 ± 70 
Arellano-Orden 2017 Europe COPD Smokers 96/33 0/0 67/58 71.9/46.9 520.5 ± 126.4 595 ± 133.3 
Zhang 2016 Asia Stable COPD Healthy 43/43 20.9/23.3 62.3/60.8 47.3/43.9 297 ± 34.3 271 ± 66.8 
Zhang 2016 Asia AECOPD Healthy 43/43 20.9/23.3 62.3/60.8 47.3/43.9 352 ± 81.3 271 ± 66.8 
Golpe 2016 Europe COPD Smokers 67/67 22.4/22.4 59.4/58.2 52.7/43.7 378.4 ± 69.6 352.2 ± 45.6 
Akiki 2016 Asia COPD Healthy 90/180 42.2/63.5 62/55 NA 299.2 ± 104.8 313.5 ± 64.2 
Tudorache 2015 Europe Stable COPD Healthy 22/20 NA 63/63 NA 303 ± 70 262 ± 40 
Tudorache 2015 Europe AECOPD Healthy 19/20 NA 63/63 NA 584 ± 62 262 ± 40 
Stoll 2015 Europe COPD Smokers 54/21 38.9/38.1 59/61 38/39 420 ± 105 360 ± 72.5 
Stoll 2015 Europe COPD Non-smokers 54/21 38.9/42.9 59/63 38/0 420 ± 105 300 ± 60 
Mutlu 2015 Asia Stable COPD Healthy 29/29 16/10 68/64 NA 366 ± 128 345 ± 174 
Mutlu 2015 Asia AECOPD Healthy 29/29 16/10 65/64 NA 487 ± 245 345 ± 174 
Ishikawa 2015 Asia COPD Smokers 47/30 4.3/6.7 70.8/62.7 62.3/57.3 300 ± 100 303.5 ± 101.2 
Ishikawa 2015 Asia COPD Non-smokers 47/20 4.3/50 70.8/59 62.3/0.34 300 ± 100 289 ± 96.3 
Gumus 2015 Asia AECOPD Healthy 43/30 7/17 68/64 53/40 581.4 ± 353.7 237.8 ± 207.4 
Boyuk 2015 Asia COPD Non-smokers 43/38 44.2/NA NA NA 363.53 ± 93.36 356 ± 50.33 
Boyuk 2015 Asia GOLD I Non-smokers 9/38 NA 57.67/NA NA 361.89 ± 72.63 356 ± 50.33 
Boyuk 2015 Asia GOLD II Non-smokers 21/38 NA 65.14/NA NA 371.1 ± 92.41 356 ± 50.33 
Boyuk 2015 Asia GOLD III Non-smokers 13/38 NA 60.23/NA NA 352.46 ± 111.91 356 ± 50.33 
Pizarro 2014 Europe COPD Smokers 62/17 6/29 62/59 60/41 400 ± 96.3 390 ± 66.7 
Pizarro 2014 Europe COPD Non-smokers 62/18 6/61 62/58 60/0 400 ± 96.3 330 ± 74.1 
Gagnon 2014 America GOLD I Healthy 37/19 32/31 65/62 44/36 234 ± 63 345 ± 249 
Can 2014 Asia Stable COPD Healthy 46/41 13/26.8 55.92/52.41 39.63/5.56 406.77 ± 172.6 336.53 ± 96.1 
Can 2014 Asia GOLD II Healthy 17/41 13/26.8 55.92/52.41 39.63/5.56 354.06 ± 170.5 336.53 ± 96.1 
Can 2014 Asia GOLD III Healthy 15/41 13/26.8 55.92/52.41 39.63/5.56 397.55 ± 162.1 336.53 ± 96.1 
Can 2014 Asia GOLD IV Healthy 14/41 13/26.8 55.92/52.41 39.63/5.56 480.81 ± 192.7 336.53 ± 96.1 
Wang 2013 Asia Stable COPD Healthy 70/70 14.3/18.6 69/68 56.4/54.3 417.7 ± 91.4 366.7 ± 101.4 
Wang 2013 Asia AECOPD Healthy 70/70 14.3/18.6 69/68 56.4/54.3 466.1 ± 90.3 366.7 ± 101.4 
Lazzeri 2013 Europe COPD Healthy 71/747 33.8/26.8 74/67 54/46.1 434 ± 148.9 391 ± 98.5 
Waschki 2012 Europe COPD Smokers 127/22 39.20/45.5 64.6/68 38.3/27.2 504 ± 122 455 ± 129 
Waschki 2012 Europe COPD Non-smokers 127/22 39.20/68.2 64.6/66.4 38.3/0 504 ± 122 408 ± 57 
Lazovic 2012 Europe COPD Healthy 43/40 39.50/47.5 61.8/45.45 28.2/5.94 603 ± 229 414 ± 163 
Gopal 2012 Europe Stable COPD Healthy 146/81 45.90/44.4 59.56/58.78 36.37/35.41 351.8 ± 84.5 330 ± 30 
Cockayne 2012 America GOLD I/II Smokers 75/15 28/27 66.9/66.8 51.9/42.9 430 ± 74.1 460 ± 37 
Cockayne 2012 America GOLD III/IV Non-smokers 65/30 25/30 66.3/66.4 58.8/0.5 460 ± 81.5 370 ± 59.3 
Agusti 2012 Europe COPD Smokers 1755/297 34/45 63.5/55.5 48.9/31.7 448 ± 95.6 391 ± 65.2 
Agusti 2012 Europe COPD Non-smokers 1755/202 34/62 63.5/53 48.9/0.2 448 ± 95.6 369 ± 78.5 
Valvi 2012 America GOLD I Healthy 2669/7271 NA NA NA 309.5 ± 67.16 294.6 ± 59.69 
Valvi 2012 America GOLD II Healthy 2221/7271 NA NA NA 320.7 ± 70.69 294.6 ± 59.69 
Valvi 2012 America GOLD III/IV Healthy 585/7271 NA NA NA 336.8 ± 74.98 294.6 ± 59.69 
Dickens 2011 Europe COPD Smokers 201/37 27/32 64.5/60.7 45.7/29.3 466 ± 117.5 425 ± 100 
Dickens 2011 Europe COPD Non-smokers 201/37 27/62 64.5/60 45.7/0 466 ± 117.5 387 ± 83 
Dickens 2011 Europe Stable COPD Smokers 157/37 NA NA NA 464 ± 115 425 ± 100 
Dickens 2011 Europe AECOPD Non-smokers 33/37 NA NA NA 534 ± 156 387 ± 83 
Selcuk 2010 Asia COPD Healthy 85/39 40/41 58.4/57.8 28/22 332 ± 129 295 ± 73 
Garcia-Rio 2010 Europe COPD Healthy 324/110 26/54 64/55 40/10 347.8 ± 97.5 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD I Healthy 177/110 32.2/54 62/55 30/10 346 ± 104 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD II Healthy 128/110 18/54 67/55 45/10 363 ± 111 312.3 ± 71.8 
Garcia-Rio 2010 Europe GOLD III Healthy 19/110 15.8/54 70/55 40/10 373 ± 117 312.3 ± 71.8 
Yanbaeva 2009 Europe COPD Healthy 355/195 38/52 64.2/54.3 39.9/29.6 360 ± 43.7 330 ± 44.4 
Watz 2009 Europe GOLD I Healthy 34/30 26/23 66.3/62.6 46.9/53.2 395 ± 64 410 ± 81 
Watz 2009 Europe GOLD II Healthy 57/30 28/23 63.3/62.6 50.7/53.2 431 ± 98 410 ± 81 
Watz 2009 Europe GOLD III Healthy 43/30 19/23 63.3/62.6 55.6/53.2 468 ± 115 410 ± 81 
Watz 2009 Europe GOLD IV Healthy 36/30 25/23 63.7/62.6 54/53.2 444 ± 89 410 ± 81 
Undas 2009 Europe Stable COPD Healthy 56/56 8.9/14.3 64.9/63.8 NA 408 ± 160 271 ± 57 
Valipour 2008 Europe Stable COPD Healthy 30/30 30/30 60/59 58/27 424 ± 74.8 360 ± 49.6 
Valipour 2008 Europe AECOPD Healthy 30/30 23/30 62/59 57/27 419 ± 104.4 360 ± 49.6 
Polatli 2008 Asia Stable COPD Healthy 33/16 NA 63.42/59.63 33.64/21.56 346.88 ± 92.3 289.99 ± 39.9 
Polatli 2008 Asia AECOPD Healthy 26/16 NA 68/59.63 45.04/21.56 447.67 ± 128 289.99 ± 39.9 
Kunter 2008 Asia AECOPD Non-smokers 30/10 13.3/NA 72.37/64.5 NA 623.77 ± 189.45 305.7 ± 77.73 
Higashimoto 2008 Asia COPD Healthy 111/75 2.7/2.7 74.9/64.5 61/41.2 340 ± 126.4 322 ± 103.9 
Eickhoff 2008 Europe COPD Smokers 60/20 45/60 62/59 66/39 426 ± 87.4 367 ± 51.1 
Eickhoff 2008 Europe COPD Non-smokers 60/20 45/65 62/62 66/0 426 ± 87.4 382 ± 82.2 
Dentener 2008 Europe COPD Healthy 16/25 37.5/52 62/56 28/15 244 ± 56 182 ± 30 
Mannino 2003 America GOLD I Healthy 1260/8446 NA NA NA 292 ± 51 281 ± 47 
Mannino 2003 America GOLD II Healthy 878/8446 NA NA NA 316 ± 58 281 ± 47 
Mannino 2003 America GOLD III/IV Healthy 228/8446 NA NA NA 340 ± 67 281 ± 47 
Ferroni 1997 Europe COPD Healthy 33/16 9/18.8 68/58 NA 342 ± 61 233 ± 44 

Data are expressed as cases/controls. Abbreviations: AECOPD, acute exacerbations of COPD; M/F, male/female; NA, not available.

Quality assessment

Using the 9-star Newcastle–Ottawa Scale system, the total score of qualified case–control studies ranged from 6 to 9 stars (mean: 7.71; standard deviation: 0.76) (Supplementary Table S2).

Overall analyses

Pooling the results of 44 qualified studies observed a significantly higher concentration of circulating fibrinogen in COPD patients than in controls (WMD: 84.67 mg/dl, 95% CI: 64.24–105.10, P<0.001), and there was strong evidence of between-study heterogeneity (I2: 97.2%, P<0.001) (Figure 2).

Forest plots for the comparisons of circulating fibrinogen between COPD patients and controls in overall analyses

Figure 2
Forest plots for the comparisons of circulating fibrinogen between COPD patients and controls in overall analyses
Figure 2
Forest plots for the comparisons of circulating fibrinogen between COPD patients and controls in overall analyses

Subgroup analyses

In view of the strong evidence of heterogeneity in overall analyses, it is necessary to explore possible causes by grouping studies according to COPD course, COPD severity, smoking habit in controls, sample size, and region, respectively.

By COPD course (Figure 3A), the degree of increased circulating fibrinogen in patients with acute exacerbations of COPD (AECOPD) relative to controls (WMD: 182.59 mg/dl, 95% CI: 115.93–249.25, P<0.001, I2: 94.5%) tripled when compared with patients with stable COPD (WMD: 56.12 mg/dl, 95% CI: 34.56–77.67, P<0.001, I2: 79.9%). By COPD severity (Figure 3B), there was a graded increase in circulating fibrinogen concentration with the increased severity of COPD relative to respective controls (for GOLD I, WMD: 13.91 mg/dl, 95% CI: 7.70–20.11, P=0.014, I2: 62.3%; for GOLD II, WMD: 29.19 mg/dl, 95% CI: 17.43–40.94, P<0.001, I2: 84.4%; for GOLD III, WMD: 56.81 mg/dl, 95% CI: 39.20–74.41, P<0.001, I2: 74.6%; for GOLD IV, WMD: 197.42 mg/dl, 95% CI: −7.88 to 402.73, P<0.001, I2: 97.1%).

Forest plots for subgroup analyses

Figure 3
Forest plots for subgroup analyses

Forest plots for subgroup analyses by COPD course (stable and acute exacerbations) (A) and by COPD severity (GOLD I, II, III, and IV) (B).

Figure 3
Forest plots for subgroup analyses

Forest plots for subgroup analyses by COPD course (stable and acute exacerbations) (A) and by COPD severity (GOLD I, II, III, and IV) (B).

By smoking habit in controls (Figure 4A), the increase in circulating fibrinogen concentration was significantly greater in COPD patients relative to non-smoking controls (WMD: 77.07 mg/dl, 95% CI: 48.30–105.83, P<0.001, I2: 89.3%) than smoking controls (WMD: 22.26 mg/dl, 95% CI: −0.24 to 44.77, P<0.001, I2: 87.9%). By sample size, the difference in circulating fibrinogen concentration between COPD patients and controls was larger in studies with sample size <50 (the median value) (WMD: 116.78 mg/dl, 95% CI: 73.84–159.72, P<0.001, I2: 94.1%) than in studies with sample size ≥ 50 (WMD: 62.31 mg/dl, 95% CI: 37.49–87.13, P<0.001, I2: 98.0%) (Figure 4B).

Forest plots for subgroup analyses

Figure 4
Forest plots for subgroup analyses

Forest plots for subgroup analyses by smoking habit in controls (smokers and non-smokers) (A) and by sample size at the median value (sample size <50 and sample size ≥50) (B).

Figure 4
Forest plots for subgroup analyses

Forest plots for subgroup analyses by smoking habit in controls (smokers and non-smokers) (A) and by sample size at the median value (sample size <50 and sample size ≥50) (B).

Subgroup analyses by region are presented in Supplementary Figure S1.

Meta-regression analyses

Other sources of heterogeneity were further explored through meta-regression analyses by modeling age, female percentage, and pack-year of COPD patients, and none of these factors reached statistical significance (all P>0.05) (Supplementary Figure S2).

Cumulative and influential analyses

Cumulative analyses revealed no significant impact from first published study on subsequently studies in overall analyses (Supplementary Figure S3). In influential analyses, the impact of any single study on overall effect-size estimates was non-significant (Supplementary Figure S4).

Publication bias

Shown in Figure 5 are the Begg’s funnel plot and filled funnel plot in overall analyses. The Begg’s funnel plot seemed apparently symmetrical, and the Egger’s test indicated a low probability of publication bias (P=0.103). As reflected by filled funnel plot, there was an estimated ten missing studies required to make the Begg’s funnel plot symmetrical. After taking these ten missing studies into account, COPD patients still had a statistically significant higher concentration of circulating fibrinogen than controls (WMD: 46.30 mg/dl, 95% CI: 21.85–70.75, P<0.001).

Begg’s and filled funnel plots in overall analyses

Figure 5
Begg’s and filled funnel plots in overall analyses

Hollow circles represent all eligible studies, and solid squares represent potentially missing studies required to achieve symmetry.

Figure 5
Begg’s and filled funnel plots in overall analyses

Hollow circles represent all eligible studies, and solid squares represent potentially missing studies required to achieve symmetry.

The aim of this meta-analysis was to examine the association of circulating fibrinogen with COPD and its severity by pooling the results of 45 published articles. The key finding of this meta-analysis suggests that a graded, concentration-dependent, significant relation exists between higher circulating fibrinogen, and more severity of COPD. To the best of our knowledge, this is thus far the first meta-analysis that has evaluated the concentration-dependent association of circulating fibrinogen with COPD severity in the literature.

In human body, fibrinogen is mainly synthesized by the liver, and it is converted into fibrin by thrombin during blood coagulation [60]. Fibrinogen is a major acute-phase reactant, and its synthesis is up-regulated in response to inflammation [61], a major clinical feature of COPD. There is evidence that fibrinogen is implicated in clot formation and is associated with advanced COPD [11]. In addition, elevated fibrinogen in circulation was found to be associated with an increased risk of acute exacerbations in COPD [62]. Furthermore, as indicated by the nationally representative NHANES III data, impaired lung function is a correlate of fibrinogen concentration and the presence of high fibrinogen concentration increases mortality risk both in the overall population and among subjects with COPD [63]. It is hence reasonable to speculate that circulating fibrinogen is a promising clinical biomarker in predicting the risk and severity of COPD. Our findings based on a meta-analysis of 45 studies reinforced this speculation by showing that there is a graded, concentration-dependent, significant relation between higher concentration of circulating fibrinogen and more severity of COPD. It is also worth noting that statistical significance retained when analysis was restricted to studies with large sample sizes and when including theoretically missing studies as estimated by the fill and trim method to control publication bias, indicating the robustness of our meta-analytical findings.

Another important finding is that there is a possible interaction between circulating fibrinogen and cigarette smoking in our subgroup analyses by smoking habit in controls, as we interestingly noticed that the difference in circulating fibrinogen concentration was more obvious when compared with non-smoking controls than with smoking controls. Cigarette smoking is an established risk factor for the development of COPD, and it is of added interest to know whether the contribution of cigarette smoking to COPD is mediated by elevated fibrinogen in circulation, which cannot be reliably investigated in the present meta-analysis due to the unavailable individual participant data. We agree further explorations on the interaction or medication impact of cigarette smoking on circulating fibrinogen are needed.

The findings of this meta-analysis are susceptible to several possible limitations. First, language selection bias is possible, as we restricted literature search to the articles written in the English language. As estimated by McAuley and colleagues, the exclusion of gray literature from a meta-analysis may result in an overestimate of an association impact by an average of 12% [64]. Second, the majority of included studies in this meta-analysis are cross-sectional in design, which might yield recall bias and preclude comments on causality. Third, in our overall and subgroup analyses, the majority of comparisons were obsessed by moderate to high degree of between-study heterogeneity, which made it difficult to draw firm conclusions and required further explorations of other possible sources for heterogeneity. Fourth, nearly all qualified studies in this meta-analysis had circulating fibrinogen concentration measured only once, and did not evaluate its long-term change in the development of COPD. Fifth, the methods to assay circulating fibrinogen are not identical across studies, which might yield measurement bias. Thereby, the jury must refrain from drawing a conclusion until future large-scale, longitudinal, well-performed studies to confirm or refuse our findings.

Despite these limitations, our findings suggest a graded, concentration-dependent, significant relation between higher circulating fibrinogen and more severity of COPD. For practical reasons, circulating fibrinogen can be proposed as a promising biomarker and an early warning sign of the susceptibility to develop COPD in the future, as issued by the FDA [15], as well as a robust predictor for the severity of COPD. Importantly, circulating fibrinogen is an easy-to-assay biomarker and can be proposed as a more practical approach toward clinical translation applications.

The authors declare that there are no competing interests associated with the manuscript.

The authors declare that there are no sources of funding to be acknowledged.

Conceived and designed the experiments: T.Y., Z.Z., W.N. Performed the experiments: B.Z., W.N. Analyzed the data: B.Z., T.Y., W.N. Contributed materials/analysis tools: S.L., D.H., K.W., Y.W., T.Y., Q.Z., Z.Z. Wrote and revised the paper: B.Z., Q.Z., W.N. All authors read and approved the final manuscript prior to submission.

     
  • AECOPD

    acute exacerbations of chronic obstructive pulmonary disease

  •  
  • COPD

    chronic obstructive pulmonary disease

  •  
  • FDA

    Food and Drug Administration

  •  
  • GOLD

    Global Initiative for Obstructive Lung Disease

  •  
  • PRISMA

    Preferred Reporting Items for Systematic reviews and Meta-Analyses

  •  
  • WMD

    weighted mean difference

  •  
  • 95% CI

    confidence interval

1.
Collaborators GBDCRD
(
2017
)
Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
.
Lancet Respir. Med
5
,
691
706
[PubMed]
2.
Lozano
R.
,
Naghavi
M.
,
Foreman
K.
,
Lim
S.
,
Shibuya
K.
,
Aboyans
V.
et al.
(
2012
)
Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010
.
Lancet
380
,
2095
2128
[PubMed]
3.
Mortality GBD and Causes of Death Collaborators
(
2015
)
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
.
Lancet
385
,
117
171
[PubMed]
4.
Barnes
P.J.
and
Celli
B.R.
(
2009
)
Systemic manifestations and comorbidities of COPD
.
Eur. Respir. J.
33
,
1165
1185
[PubMed]
5.
Pelgrim
C.E.
,
Peterson
J.D.
,
Gosker
H.R.
,
Schols
A.
,
van Helvoort
A.
,
Garssen
J.
et al.
(
2019
)
Psychological co-morbidities in COPD: targeting systemic inflammation, a benefit for both?
Eur. J. Pharmacol.
842
,
99
110
[PubMed]
6.
Tan
D.B.
,
Fernandez
S.
,
Price
P.
,
French
M.A.
,
Thompson
P.J.
and
Moodley
Y.P.
(
2014
)
Impaired CTLA-4 responses in COPD are associated with systemic inflammation
.
Cell Mol. Immunol.
11
,
606
608
[PubMed]
7.
Wang
J.
,
Pathak
R.
,
Garg
S.
and
Hauer-Jensen
M.
(
2017
)
Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy
.
World J. Gastroenterol.
23
,
4701
4711
[PubMed]
8.
Ishikawa
N.
,
Hattori
N.
,
Kohno
N.
,
Kobayashi
A.
,
Hayamizu
T.
and
Johnson
M.
(
2015
)
Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls
.
Int. J. Chron. Obstruct. Pulmon. Dis
10
,
185
192
[PubMed]
9.
Dickens
J.A.
,
Miller
B.E.
,
Edwards
L.D.
,
Silverman
E.K.
,
Lomas
D.A.
and
Tal-Singer
R.
(
2011
)
COPD association and repeatability of blood biomarkers in the ECLIPSE cohort
.
Respir. Res.
12
,
146
[PubMed]
10.
Polatli
M.
,
Cakir
A.
,
Cildag
O.
,
Bolaman
A.Z.
,
Yenisey
C.
and
Yenicerioglu
Y.
(
2008
)
Microalbuminuria, von Willebrand factor and fibrinogen levels as markers of the severity in COPD exacerbation
.
J. Thromb. Thrombolysis
26
,
97
102
[PubMed]
11.
Arellano-Orden
E.
,
Calero-Acuna
C.
,
Cordero
J.A.
,
Abad-Arranz
M.
,
Sanchez-Lopez
V.
,
Marquez-Martin
E.
et al.
(
2017
)
Specific networks of plasma acute phase reactants are associated with the severity of chronic obstructive pulmonary disease: a case-control study
.
Int. J. Med. Sci.
14
,
67
74
[PubMed]
12.
Gagnon
P.
,
Lemire
B.B.
,
Dube
A.
,
Saey
D.
,
Porlier
A.
,
Croteau
M.
et al.
(
2014
)
Preserved function and reduced angiogenesis potential of the quadriceps in patients with mild COPD
.
Respir. Res.
15
,
4
[PubMed]
13.
Cockayne
D.A.
,
Cheng
D.T.
,
Waschki
B.
,
Sridhar
S.
,
Ravindran
P.
,
Hilton
H.
et al.
(
2012
)
Systemic biomarkers of neutrophilic inflammation, tissue injury and repair in COPD patients with differing levels of disease severity
.
PLoS ONE
7
,
e38629
[PubMed]
14.
Bellou
V.
,
Belbasis
L.
,
Konstantinidis
A.K.
and
Evangelou
E.
(
2019
)
Elucidating the risk factors for chronic obstructive pulmonary disease: an umbrella review of meta-analyses
.
Int. J. Tuberc. Lung Dis.
23
,
58
66
[PubMed]
15.
COPD Foundation
https://www.copdfoundation.org/. Accessed 6 July 2020
16.
Kirkpatrick
D.P.
and
Dransfield
M.T.
(
2009
)
Racial and sex differences in chronic obstructive pulmonary disease susceptibility, diagnosis, and treatment
.
Curr. Opin. Pulm. Med.
15
,
100
104
[PubMed]
17.
Moher
D.
,
Liberati
A.
,
Tetzlaff
J.
,
Altman
D.G.
and
Group
P.
(
2009
)
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
.
BMJ
339
,
b2535
[PubMed]
18.
Stang
A.
(
2010
)
Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses
.
Eur. J. Epidemiol.
25
,
603
605
[PubMed]
19.
DerSimonian
R.
and
Kacker
R.
(
2007
)
Random-effects model for meta-analysis of clinical trials: an update
.
Contemp. Clin. Trials
28
,
105
114
[PubMed]
20.
Bowden
J.
,
Tierney
J.F.
,
Copas
A.J.
and
Burdett
S.
(
2011
)
Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics
.
BMC Med. Res. Methodol.
11
,
41
[PubMed]
21.
Ronnow
S.R.
,
Sand
J.M.B.
,
Langholm
L.L.
,
Manon-Jensen
T.
,
Karsdal
M.A.
,
Tal-Singer
R.
et al.
(
2019
)
Type IV collagen turnover is predictive of mortality in COPD: a comparison to fibrinogen in a prospective analysis of the ECLIPSE cohort
.
Respir. Res.
20
,
63
[PubMed]
22.
Olloquequi
J.
,
Jaime
S.
,
Parra
V.
,
Cornejo-Cordova
E.
,
Valdivia
G.
,
Agusti
A.
et al.
(
2018
)
Comparative analysis of COPD associated with tobacco smoking, biomass smoke exposure or both
.
Respir. Res.
19
,
13
[PubMed]
23.
Jin
G.
,
Chen
Z.
,
Zhang
J.
,
Song
J.
,
Shi
J.
and
Zhou
B.
(
2018
)
Association of brain natriuretic peptide gene polymorphisms with chronic obstructive pulmonary disease complicated with pulmonary hypertension and its mechanism
.
Biosci. Rep.
38
,
24.
Aleva
F.E.
,
Temba
G.
,
de Mast
Q.
,
Simons
S.O.
,
de Groot
P.G.
,
Heijdra
Y.F.
et al.
(
2018
)
Increased platelet-monocyte interaction in stable COPD in the absence of platelet hyper-reactivity
.
Respiration
95
,
35
43
[PubMed]
25.
AboEl-Magd
G.H.
and
Mabrouk
M.M.
(
2018
)
Soluble urokinase-type plasminogen activator receptor as a measure of treatment response in acute exacerbation of COPD
.
J. Bras. Pneumol.
44
,
36
41
[PubMed]
26.
Zeng
M.
,
Chen
Q.
,
Liang
W.
,
He
W.
,
Zheng
H.
and
Huang
C.
(
2017
)
Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients
.
Int. J. Chron. Obstruct. Pulmon. Dis.
12
,
3495
3501
[PubMed]
27.
Ugurlu
E.
,
Kilic-Toprak
E.
,
Can
I.
,
Kilic-Erkek
O.
,
Altinisik
G.
and
Bor-Kucukatay
M.
(
2017
)
Impaired hemorheology in exacerbations of COPD
.
Can. Respir. J.
2017
,
1286263
[PubMed]
28.
Lopez-Sanchez
M.
,
Munoz-Esquerre
M.
,
Huertas
D.
,
Montes
A.
,
Molina-Molina
M.
,
Manresa
F.
et al.
(
2017
)
Inflammatory markers and circulating extracellular matrix proteins in patients with chronic obstructive pulmonary disease and left ventricular diastolic dysfunction
.
Clin. Respir. J.
11
,
859
866
[PubMed]
29.
Golpe
R.
,
Martin-Robles
I.
,
Sanjuan-Lopez
P.
,
Perez-de-Llano
L.
,
Gonzalez-Juanatey
C.
,
Lopez-Campos
J.L.
et al.
(
2017
)
Differences in systemic inflammation between cigarette and biomass smoke-induced COPD
.
Int. J. Chron. Obstruct. Pulmon. Dis.
12
,
2639
2646
[PubMed]
30.
Diao
W.
,
Shen
N.
,
Du
Y.
,
Sun
X.
,
Liu
B.
,
Xu
M.
et al.
(
2017
)
Identification of thyroxine-binding globulin as a candidate plasma marker of chronic obstructive pulmonary disease
.
Int. J. Chron. Obstruct. Pulmon. Dis.
12
,
1549
1564
[PubMed]
31.
Zhang
M.
,
Zhang
J.
,
Zhang
Q.
,
Yang
X.
,
Shan
H.
,
Ming
Z.
et al.
(
2016
)
D-dimer as a potential biomarker for the progression of COPD
.
Clin. Chim. Acta
455
,
55
59
[PubMed]
32.
Golpe
R.
,
Mateos-Colino
A.
,
Testa-Fernandez
A.
,
Pena-Seijo
M.
,
Rodriguez-Enriquez
M.
,
Gonzalez-Juanatey
C.
et al.
(
2016
)
Blood pressure profile and hypertensive organ damage in COPD patients and matched controls. The RETAPOC Study
.
PLoS ONE
11
,
e0157932
[PubMed]
33.
Akiki
Z.
,
Fakih
D.
,
Jounblat
R.
,
Chamat
S.
,
Waked
M.
,
Holmskov
U.
et al.
(
2016
)
Surfactant protein D, a clinical biomarker for chronic obstructive pulmonary disease with excellent discriminant values
.
Exp. Ther. Med.
11
,
723
730
[PubMed]
34.
Tudorache
E.
,
Oancea
C.
,
Avram
C.
,
Fira-Mladinescu
O.
,
Petrescu
L.
and
Timar
B.
(
2015
)
Balance impairment and systemic inflammation in chronic obstructive pulmonary disease
.
Int. J. Chron. Obstruct. Pulmon. Dis.
10
,
1847
1852
[PubMed]
35.
Stoll
P.
,
Ulrich
M.
,
Bratke
K.
,
Garbe
K.
,
Virchow
J.C.
and
Lommatzsch
M.
(
2015
)
Imbalance of dendritic cell co-stimulation in COPD
.
Respir. Res.
16
,
19
[PubMed]
36.
Mutlu
L.C.
,
Altintas
N.
,
Aydin
M.
,
Tulubas
F.
,
Oran
M.
,
Kucukyalin
V.
et al.
(
2015
)
Growth differentiation factor-15 is a novel biomarker predicting acute exacerbation of chronic obstructive pulmonary disease
.
Inflammation
38
,
1805
1813
[PubMed]
37.
Gumus
A.
,
Altintas
N.
,
Cinarka
H.
,
Kirbas
A.
,
Haziroglu
M.
,
Karatas
M.
et al.
(
2015
)
Soluble urokinase-type plasminogen activator receptor is a novel biomarker predicting acute exacerbation in COPD
.
Int. J. Chron. Obstruct. Pulmon. Dis
10
,
357
365
[PubMed]
38.
Boyuk
B.
,
Guzel
E.C.
,
Atalay
H.
,
Guzel
S.
,
Mutlu
L.C.
and
Kucukyalcin
V.
(
2015
)
Relationship between plasma chemerin levels and disease severity in COPD patients
.
Clin. Respir. J.
9
,
468
474
[PubMed]
39.
Pizarro
S.
,
Garcia-Lucio
J.
,
Peinado
V.I.
,
Tura-Ceide
O.
,
Diez
M.
,
Blanco
I.
et al.
(
2014
)
Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease
.
PLoS ONE
9
,
e106163
[PubMed]
40.
Can
U.
,
Guzelant
A.
,
Yerlikaya
F.H.
and
Yosunkaya
S.
(
2014
)
The role of serum soluble urokinase-type plasminogen activator receptor in stable chronic obstructive pulmonary disease
.
J. Investig. Med.
62
,
938
943
[PubMed]
41.
Wang
R.T.
,
Li
J.Y.
,
Cao
Z.G.
and
Li
Y.
(
2013
)
Mean platelet volume is decreased during an acute exacerbation of chronic obstructive pulmonary disease
.
Respirology
18
,
1244
1248
[PubMed]
42.
Lazzeri
C.
,
Valente
S.
,
Attana
P.
,
Chiostri
M.
,
Picariello
C.
and
Gensini
G.F.
(
2013
)
The prognostic role of chronic obstructive pulmonary disease in ST-elevation myocardial infarction after primary angioplasty
.
Eur. J. Prev. Cardiol
20
,
392
398
[PubMed]
43.
Waschki
B.
,
Spruit
M.A.
,
Watz
H.
,
Albert
P.S.
,
Shrikrishna
D.
,
Groenen
M.
et al.
(
2012
)
Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study
.
Respir. Med.
106
,
522
530
[PubMed]
44.
Lazovic
B.
(
2012
)
Correlation of CRP and serum level of fibrinogen with severity of disease in chronic obstructive pulmonary disease patients
.
Med. Arch.
66
,
159
160
[PubMed]
45.
Gopal
P.
,
Rutten
E.P.
,
Dentener
M.A.
,
Wouters
E.F.
and
Reynaert
N.L.
(
2012
)
Decreased plasma sRAGE levels in COPD: influence of oxygen therapy
.
Eur. J. Clin. Invest.
42
,
807
814
[PubMed]
46.
Agusti
A.
,
Edwards
L.D.
,
Rennard
S.I.
,
MacNee
W.
,
Tal-Singer
R.
,
Miller
B.E.
et al.
(
2012
)
Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype
.
PLoS ONE
7
,
e37483
[PubMed]
47.
Selcuk
H.
,
Maden
O.
,
Selcuk
M.T.
,
Celenk
M.K.
,
Geyik
B.
and
Tufekcioglu
O.
(
2010
)
Documentation of impaired coronary blood flow in chronic obstructive pulmonary disease patients
.
Circ. J.
74
,
346
352
[PubMed]
48.
Garcia-Rio
F.
,
Miravitlles
M.
,
Soriano
J.B.
,
Munoz
L.
,
Duran-Tauleria
E.
,
Sanchez
G.
et al.
(
2010
)
Systemic inflammation in chronic obstructive pulmonary disease: a population-based study
.
Respir. Res.
11
,
63
[PubMed]
49.
Yanbaeva
D.G.
,
Dentener
M.A.
,
Spruit
M.A.
,
Houwing-Duistermaat
J.J.
,
Kotz
D.
,
Passos
V.L.
et al.
(
2009
)
IL6 and CRP haplotypes are associated with COPD risk and systemic inflammation: a case-control study
.
BMC Med. Genet.
10
,
23
[PubMed]
50.
Watz
H.
,
Waschki
B.
,
Kirsten
A.
,
Muller
K.C.
,
Kretschmar
G.
,
Meyer
T.
et al.
(
2009
)
The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity
.
Chest
136
,
1039
1046
[PubMed]
51.
Undas
A.
,
Kaczmarek
P.
,
Sladek
K.
,
Stepien
E.
,
Skucha
W.
,
Rzeszutko
M.
et al.
(
2009
)
Fibrin clot properties are altered in patients with chronic obstructive pulmonary disease. Beneficial effects of simvastatin treatment
.
Thromb. Haemost.
102
,
1176
1182
[PubMed]
52.
Valipour
A.
,
Schreder
M.
,
Wolzt
M.
,
Saliba
S.
,
Kapiotis
S.
,
Eickhoff
P.
et al.
(
2008
)
Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease
.
Clin. Sci. (Lond.)
115
,
225
232
[PubMed]
53.
Kunter
E.
,
Ilvan
A.
,
Ozmen
N.
,
Demirer
E.
,
Ozturk
A.
,
Avsar
K.
et al.
(
2008
)
Effect of corticosteroids on hemostasis and pulmonary arterial pressure during chronic obstructive pulmonary disease exacerbation
.
Respiration
75
,
145
154
[PubMed]
54.
Higashimoto
Y.
,
Yamagata
Y.
,
Taya
S.
,
Iwata
T.
,
Okada
M.
,
Ishiguchi
T.
et al.
(
2008
)
Systemic inflammation in chronic obstructive pulmonary disease and asthma: Similarities and differences
.
Respirology
13
,
128
133
[PubMed]
55.
Eickhoff
P.
,
Valipour
A.
,
Kiss
D.
,
Schreder
M.
,
Cekici
L.
,
Geyer
K.
et al.
(
2008
)
Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease
.
Am. J. Respir. Crit. Care Med.
178
,
1211
1218
[PubMed]
56.
Dentener
M.A.
,
Creutzberg
E.C.
,
Pennings
H.J.
,
Rijkers
G.T.
,
Mercken
E.
and
Wouters
E.F.
(
2008
)
Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study
.
Respiration
76
,
275
282
[PubMed]
57.
Ferroni
P.
,
Basili
S.
,
Alessandri
C.
,
Vieri
M.
,
Martini
F.
,
Belogi
A.
et al.
(
1997
)
Proinflammatory cytokines and hemostatic system in patients with chronic obstructive pulmonary disease
.
Platelets
8
,
255
259
[PubMed]
58.
Valvi
D.
,
Mannino
D.M.
,
Mullerova
H.
and
Tal-Singer
R.
(
2012
)
Fibrinogen, chronic obstructive pulmonary disease (COPD) and outcomes in two United States cohorts
.
Int. J. Chron. Obstruct. Pulmon. Dis
7
,
173
182
[PubMed]
59.
Mannino
D.M.
,
Ford
E.S.
and
Redd
S.C.
(
2003
)
Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination
.
Am. J. Med.
114
,
758
762
[PubMed]
60.
Vilar
R.
,
Fish
R.J.
,
Casini
A.
and
Neerman-Arbez
M.
(
2020
)
Fibrin(ogen) in human disease: both friend and foe
.
Haematologica
105
,
284
296
[PubMed]
61.
Lowe
G.D.
,
Rumley
A.
and
Mackie
I.J.
(
2004
)
Plasma fibrinogen
.
Ann. Clin. Biochem.
41
,
430
440
[PubMed]
62.
Ingebrigtsen
T.S.
,
Marott
J.L.
,
Rode
L.
,
Vestbo
J.
,
Lange
P.
and
Nordestgaard
B.G.
(
2015
)
Fibrinogen and alpha1-antitrypsin in COPD exacerbations
.
Thorax
70
,
1014
1021
[PubMed]
63.
Mannino
D.M.
,
Valvi
D.
,
Mullerova
H.
and
Tal-Singer
R.
(
2012
)
Fibrinogen, COPD and mortality in a nationally representative U.S. cohort
.
COPD
9
,
359
366
[PubMed]
64.
McAuley
L.
,
Pham
B.
,
Tugwell
P.
and
Moher
D.
(
2000
)
Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses?
Lancet
356
,
1228
1231
[PubMed]

Author notes

*

These authors contributed equally to this work.

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

Supplementary data