This study aims to reveal the molecular mechanism of peroxisome proliferator-activated receptor γ (PPARγ) on sepsis-induced acute lung injury (ALI). To do that, the rat injury model was established using cecal ligation and perforation (CLP) method, followed by different treatments, and the rats were divided into Sham group, CLP group, CLP + rosiglitazone (PPARγ agonist) group, CLP + GW9662 (PPARγ inhibitor) group, CLP + bpV (PTEN inhibitor) group, CLP + GW9662 + bpV group. Compared with Sham group, the mRNA and protein expression levels of PPARγ were down-regulated, the inflammation levels were elevated, and the apoptosis was increased in CLP group. After treatment with rosiglitazone, the protein expression level of PPARγ was significantly up-regulated, the phosphorylation level of PTEN/β-catenin pathway was decreased, the PTEN/β-catenin pathway was inhibited, the lung injury, inflammation and apoptosis were reduced. The opposite effect was observed after treatment with GW9662. Besides, bpV inhibited PTEN/β-catenin pathway, and relieved the lung tissue injury. The overexpression of PPARγ reduced inflammatory response and inhibited apoptosis in sepsis-induced ALI. Furthermore, PPARγ relieved the sepsis-induced ALI by inhibiting the PTEN/β-catenin pathway.

This content is only available as a PDF.
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.