The present study was designed to investigate the role of amylin, H2S, and connexin 43 in vascular dysfunction and enhanced ischemia-reperfusion (I/R)-induced myocardial injury in diabetic rats. A single dose of streptozotocin (65 mg/kg) was employed to induce diabetes mellitus. After eight weeks, there was a significant decrease in the plasma levels of amylin, an increase in I/R injury to isolated hearts (increase in CK-MB and cardiac troponin release) on the Langendorff apparatus. Moreover, there was a significant impairment in vascular endothelium function as assessed by quantifying acetylcholine-induced relaxation in norepinephrine-precontracted mesenteric arteries. There was also a marked decrease in the expression of H2S and connexin 43 in the hearts following I/R injury in diabetic rats. Treatment with amylin agonist, pramlintide (100 and 200 µg/kg), and H2S donor, NaHS (10 and 20 μmol/kg) for two weeks improved the vascular endothelium function, abolished enhanced myocardial injury and restored the levels of H2S along with connexin 43 in diabetic animals. However, pramlintide and NaHS failed to produce these effects the presence of gap junction blocker, carbenoxolone (20 and 40 mg/kg). Carbenoxolone also abolished the myocardial levels of connexin 43 without affecting the plasma levels of amylin and myocardial levels of H2S. The decrease in the amylin levels with a consequent reduction in H2S and connexin 43 may contribute to inducing vascular dysfunction and enhancing I/R-induced myocardial injury in diabetic rats.

This content is only available as a PDF.
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.