MicroRNA-106b-5p (miR-106b-5p) is involved in the development of many cancers including in colorectal cancer (CRC), and FAT4 is correlated with regulation of growth and apoptosis of cancer cells. This study aimed to investigate the relation between FAT4 and miR-106b-5p and the underlying mechanism of the two on the development of CRC. Quantitative real-time PCR (qRT-PCR) assay and Western blot (WB) analysis were performed to detect the expressions of mRNAs, miRNA and proteins. The viability of CRC cells was detected by cell counting kit-8 (CCK-8). Scratch test and transwell assay were performed to measure the migration and invasion of CRC cell. Tumor angiogenesis was simulated by in vitro angiogenesis experiment. Dual-luciferase reporter assay was performed to verify the targeting relation between miR-106b-5p and FAT4. The study found that the expression of FAT4 was down-regulated and that of miR-106b-5p was up-regulated in CRC tissues. Overexpression of FAT4 resulted in decreased proliferation, migration, invasion and angiogenesis of CRC cells, whereas silencing of FAT4 led to the opposite results. In rescue experiment, miR-106b-5p partially reversed the function of FAT4 in CRC cells, thus playing a carcinogenic role by targeting FAT4 in the CRC cells.

This content is only available as a PDF.
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.