Background: Glioblastoma multiforme (GBM) is a most common aggressive malignant brain tumor. In recent years, targeted therapy has been increasingly applied in GBM treatment. Methods:In this study, GSE22866 was downloaded from gene expression omnibus (GEO). The genomic and clinical data were obtained from TCGA. The differentially expressed genes (DEGs) were identified and functional analysis was performed using clusterprofiler. Then, the co-expression network for the DEGs was established using the “WGCNA” package. Next, the protein-protein interaction (PPI) was assessed using Search Tool for the Retrieval of Interacting Genes Database (STRING) and hub modules in Cytoscape were screened. The Venn diagram was plotted to showcase the overlapped hub DEGs in PPI network and TCGA. Univariate and multivariate Cox proportional hazards regression analyses were performed to predict the risk score of each patient. Validations of the hub gene were completed in other databases. Results:Functional analysis of the DEGs verified the involvement of DEGs in growth factor binding and gated channel activity. Among the 10 GBM-related modules, the red one displayed the strongest tie with GBM. VAMP2 was filtered out as the most intimate protein. The PPI network and TCGA were comprehensively analyzed. Finally, SNAP25 was identified as a real hub gene positively correlated with GBM prognosis. The result was validated by GEPIA, ONCOMINE database and qRT-PCR. Conclusions: SNAP25 might act as a GBM suppressor and a biomarker in GBM treatment.

This content is only available as a PDF.
This is an Accepted Manuscript; not the final Version of Record. You are encouraged to use the final Version of Record that, when published, will replace this manuscript and be freely available under a Creative Commons licence.