Potassium channels are ubiquitous, being present in all living organisms. These proteins share common structural elements, which confer common functional features. In general, all K+ channels have a high selectivity for K+, and are blocked by cations of similar dimensions, such as Cs+ and Ba2+. Mutations in the pore region tend to lead to either the total loss of function or K+ selectivity. We have made mutations to one of the most highly conserved residues of the pore, glycine-143, of the inward rectifier ROMK1 (Kir1.1), and examined the resulting channel properties in the Xenopus oocyte expression system with a two-electrode voltage clamp. Mutations G143A and G143R resulted in failure to express functional channels. Co-injection of wild-type ROMK1 cRNA with these mutants led to rescue of channel function, which was different from wild-type ROMK1. In both mutants, the sensitivity to Ba2+ and Cs+ was increased, the rate of onset of block by Ba2+ was enhanced, and the selectivity to potassium was reduced. Whereas the crystallographic evidence shows that cations bind to the carbonyl backbone of the pore-lining residues, the present results indicate that the side chains of these amino acids, which face away from the pore lining, also affect permeation.

This content is only available as a PDF.
You do not currently have access to this content.