The main aim of the present study was to investigate the direct inotropic effects of stimulation of the endothelin (ET) receptor ETA under in vivo conditions. It is well known that ETA receptor stimulation causes pronounced vasoconstriction. The ET-1-induced coronary vasoconstriction may lead to myocardial ischaemia and, consequently, to cardiodepressor effects that may mask the direct positive inotropic effect of ETA receptor stimulation. Thus, in the present study, steps were taken to avoid this possibility. In anaesthetized open-chest rats the haemodynamic and inotropic effects of ETA receptor stimulation were studied by monitoring responses evoked by ET-1 (1 nmol/kg of body weight) after ETB receptor blockade with BQ 788 (0.5 μmol/kg of body weight); these responses were compared with saline controls (after ETB receptor blockade). To avoid vasoconstrictor effects induced by ETA receptor stimulation, additional experiments were performed in the presence of the vasodilator adenosine (2.0 mg·kg−1 of body weight·min−1). Myocardial function was also examined during aortic clamping so as to circumvent the effect of changes in afterload. We studied further the effect of ETA receptor stimulation on myocardial energy metabolism. ETA receptor stimulation reduced cardiac output (−49% compared with control), raised total peripheral resistance (+173%) and reduced myocardial ATP content (−23%). Aortic clamping did not reveal a positive inotropic effect of ETA receptor stimulation. Furthermore, even though adenosine attenuated the decrease in cardiac output (−21%), the increase of total peripheral resistance (+48%) and prevented the fall of myocardial ATP content (+6%), this did not unmask a positive inotropic effect of ETA receptor stimulation. Thus we conclude that ETA receptor stimulation causes vasoconstriction and myocardial ischaemia, but has no positive inotropic effects in rats.

You do not currently have access to this content.