We have demonstrated recently [Callera, Touyz, Teixeira, Muscara, Carvalho, Fortes, Schiffrin and Tostes (2003) Hypertension 42, 811–817] that increased vascular oxidative stress in DOCA (deoxycorticosterone acetate)-salt rats is associated with activation of the ET (endothelin) system via ETA receptors. The exact source of ET-1-mediated oxidative stress remains unclear. The aim of the present study was to investigate whether ET-1 increases generation of ROS (reactive oxygen species) in DOCA-salt hypertension through NADPH-oxidase-dependent mechanisms. Xanthine oxidase, eNOS (endothelial nitric oxide synthase) and COX-2 (cyclo-oxygenase-2) were also examined as potential ET-1 sources of ROS as well as mitochondrial respiration. DOCA-salt and control UniNX (uninephrectomized) rats were treated with the ETA antagonist BMS182874 (40 mg·day−1·kg−1 of body weight) or vehicle. Plasma TBARS (thiobarbituric acid-reacting substances) were increased in DOCA-salt compared with UniNX rats. Activity of NADPH and xanthine oxidases in aorta, mesenteric arteries and heart was increased in DOCA-salt rats. BMS182874 decreased plasma TBARS levels without influencing NADPH and xanthine oxidase activities in DOCA-salt rats. Increased p22phox protein expression and increased p47phox membrane translocation in arteries from DOCA-salt by rats were not affected by BMS182874 treatment. Increased eNOS and COX-2 expression, also observed in aortas from DOCA-salt rats, was unaltered by BMS182874. Increased mitochondrial generation of ROS in DOCA-salt rats was normalized by BMS182874. ETA antagonism also increased the expression of mitochondrial MnSOD (manganese superoxide dismutase) in DOCA-salt rats. In conclusion, activation of NADPH oxidase does not seem to be the major source of oxidative stress induced by ET-1/ETA in DOCA-salt hypertension, which also appears to be independent of increased activation of xanthine oxidase or eNOS/COX-2 overexpression. Mitochondria may play a role in ET-1-driven oxidative stress, as evidenced by increased mitochondrial-derived ROS in this model of hypertension.

You do not currently have access to this content.