Quantitative analysis of the arterial pressure pulse waveform recorded by applanation tonometry of the radial artery can track NO (nitric oxide)-mediated modulation of arterial smooth muscle tone. The changes in pressure pulse waveform morphology result from pulse wave reflection arising predominantly from smaller arteries and arterioles. Employing Doppler ultrasound to record the spectral flow velocity waveform in the ophthalmic artery, we studied the effects of NO modulation on waveforms recorded in the proximity of the terminal ocular microcirculatory bed. In healthy young men (n=10; age 18–26 years), recordings were made at baseline, following 300 μg of sublingual GTN (glyceryl trinitrate) and during the intravenous infusion of 0.25 and 0.5 mg/kg of L-NAME (NG-nitro-L-arginine methyl ester). Peaks (P1, P2 and P3) and nodes (N1, N2 and N3) on the arterial flow velocity waveform were identified during the cardiac cycle and employed to quantify waveshape change in response to the haemodynamic actions of the pharmacological interventions. The administration of GTN resulted in a significant (P<0.05) increase in heart rate without significant alteration in blood pressure. At the doses employed, L-NAME did not significantly alter systemic haemodynamics. With the exception of peak Doppler systolic velocity, all other peaks and nodes decreased significantly in response to GTN (P<0.05 for all points compared with baseline). In response to the administration of L-NAME, all peaks and nodes decreased significantly (P<0.05 for all points compared with baseline). The resistive index, a ratio calculated from the peak and trough flow velocities employed to assess change in flow resistance, increased significantly in response to GTN (0.77 at baseline compared with 0.85; P<0.05). Quantification of changes in the flow velocity spectral waveform during the cardiac cycle sensitively identified NO modulation of smooth muscle tone prior to alteration in systemic haemodynamics. Focusing on the resistive index, which identifies isolated points on the waveform describing the excursions of flow, may provide misleading information in relation to the haemodynamic effects of drug interventions.
Skip Nav Destination
Article navigation
July 2006
-
Cover Image
Cover Image
- PDF Icon PDF LinkTable of Contents
Research Article|
June 14 2006
Nitric oxide modulation of ophthalmic artery blood flow velocity waveform morphology in healthy volunteers
Christopher J. Lockhart;
Christopher J. Lockhart
*Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast BT9 7BL, U.K.
Search for other works by this author on:
Andrew J. Gamble;
Andrew J. Gamble
†Northern Ireland Regional Medical Physics Agency, Royal Victoria Hospital, Belfast BT12 6BA, U.K.
Search for other works by this author on:
Derrick Rea;
Derrick Rea
†Northern Ireland Regional Medical Physics Agency, Royal Victoria Hospital, Belfast BT12 6BA, U.K.
Search for other works by this author on:
Sinead Hughes;
Sinead Hughes
*Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast BT9 7BL, U.K.
Search for other works by this author on:
R. Canice McGivern;
R. Canice McGivern
†Northern Ireland Regional Medical Physics Agency, Royal Victoria Hospital, Belfast BT12 6BA, U.K.
Search for other works by this author on:
Clive Wolsley;
Clive Wolsley
†Northern Ireland Regional Medical Physics Agency, Royal Victoria Hospital, Belfast BT12 6BA, U.K.
Search for other works by this author on:
Michael Stevenson;
Michael Stevenson
‡Clinical Research Support Centre, Royal Group of Hospitals Trust, Belfast BT12 6BA, U.K.
Search for other works by this author on:
Mark T. Harbinson;
Mark T. Harbinson
*Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast BT9 7BL, U.K.
Search for other works by this author on:
Richard D. Plumb;
Richard D. Plumb
*Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast BT9 7BL, U.K.
Search for other works by this author on:
Gary E. McVeigh
*Department of Therapeutics and Pharmacology, Queen's University Belfast, Belfast BT9 7BL, U.K.
Correspondence: Professor Gary E. McVeigh (email [email protected]).
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
December 12 2005
Revision Received:
January 26 2006
Accepted:
February 24 2006
Accepted Manuscript online:
February 24 2006
Online ISSN: 1470-8736
Print ISSN: 0143-5221
The Biochemical Society
2006
Clin Sci (Lond) (2006) 111 (1): 47–52.
Article history
Received:
December 12 2005
Revision Received:
January 26 2006
Accepted:
February 24 2006
Accepted Manuscript online:
February 24 2006
Citation
Christopher J. Lockhart, Andrew J. Gamble, Derrick Rea, Sinead Hughes, R. Canice McGivern, Clive Wolsley, Michael Stevenson, Mark T. Harbinson, Richard D. Plumb, Gary E. McVeigh; Nitric oxide modulation of ophthalmic artery blood flow velocity waveform morphology in healthy volunteers. Clin Sci (Lond) 1 July 2006; 111 (1): 47–52. doi: https://doi.org/10.1042/CS20050365
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() |