Hypertension is a prevalent condition in the developed world and disease severity is directly correlated with additional cardiovascular complications. It is estimated that 30% of the adult population in the United States has hypertension, which is classified as a systolic blood pressure ≥140 mmHg and/or a diastolic blood pressure ≥90 mmHg. A prolonged increase in afterload ultimately leads to congestive heart failure in the majority of cases. Currently, medication designed to treat hypertension is inadequate, thus new therapies need to be explored. Blood pressure is tightly regulated by blood vessel radius, which is established by hormones and/or peptides binding to GPCRs (G-protein-coupled receptors). Catecholamines and peptide hormones, such as AngII (angiotensin II), are elevated in hypertension and, therefore, signalling by these GPCRs is increased. Their signalling is tightly controlled by a class of proteins, the GRKs (GPCR kinases). Elevated levels of either GRK2 or GRK5 in both the lymphocytes and VSM (vascular smooth muscle) are associated with human hypertension and animal models of the disease. The focus of the present review is on the role GRKs, and their regulation of GPCRs, play in high blood pressure.

You do not currently have access to this content.