Viral exacerbations of allergen-induced pulmonary inflammation in pre-clinical models reportedly reduce the efficacy of glucocorticoids to limit pulmonary inflammation and airways hyper-responsiveness to inhaled spasmogens. However, exacerbations of airway obstruction induced by allergen challenge have not yet been studied. hPIV-3 (human parainfluenza type 3 virus) inoculation of guinea-pigs increased inflammatory cell counts in BAL (bronchoalveolar lavage) fluid and caused hyper-responsiveness to inhaled histamine. Both responses were abolished by treatment with either dexamethasone (20 mg/kg of body weight, subcutaneous, once a day) or fluticasone propionate (a 0.5 mg/ml solution aerosolized and inhaled over 15 min, twice a day). In ovalbumin-sensitized guinea-pigs, allergen (ovalbumin) challenge caused two phases of airway obstruction [measured as changes in sGaw (specific airways conductance) using whole body plethysmography]: an immediate phase lasting between 4 and 6 h and a late phase at about 7 h. The late phase, airway hyper-responsiveness to histamine and inflammatory cell counts in BAL were all significantly reduced by either glucocorticoid. Inoculation of guinea-pigs sensitized to ovalbumin with hPIV-3 transformed the allergen-induced airway obstruction from two transient phases into a single sustained response lasting up to 12 h. This exacerbated airway obstruction and airway hyper-responsiveness to histamine were unaffected by treatment with either glucocorticoid whereas inflammatory cell counts in BAL were only partially inhibited. Virus- or allergen-induced pulmonary inflammation, individually, are glucocorticoid-sensitive, but in combination generate a phenotype where glucocorticoid efficacy is impaired. This suggests that during respiratory virus infection, glucocorticoids might be less effective in limiting pulmonary inflammation associated with asthma.

You do not currently have access to this content.