Up-regulation of ICAM-1 (intercellular adhesion molecule-1) is frequently implicated in lung inflammation and lung diseases, such as IPF (idiopathic pulmonary fibrosis). Thrombin has been shown to play a key role in inflammation via the induction of adhesion molecules, which then causes lung injury. However, the mechanisms underlying thrombin-induced ICAM-1 expression in HPAEpiCs (human pulmonary alveolar epithelial cells) remain unclear. In the present study, we have shown that thrombin induced ICAM-1 expression in HPAEpiCs. Pre-treatment with the inhibitor of thrombin [PPACK (D-Phe-Pro-Arg-chloromethyl ketone)], c-Src (PP1), PDGFR (platelet-derived growth factor receptor) (AG1296), PI3K (phosohinositide 3-kinase) (LY294002), NF-κB (nuclear factor κB) (Bay11-7082) or p300 (GR343) and transfection with siRNAs of c-Src, PDGFR, Akt, p65 and p300 markedly reduced thrombin-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with thrombin. In addition, we established that thrombin stimulated the phosphorylation of c-Src, PDGFR, Akt and p65, which were inhibited by pre-treatment with their respective inhibitors PP1, AG1296, LY294002 or Bay11-7082. In addition, thrombin also enhanced Akt and NF-κB translocation from the cytosol to the nucleus, which was reduced by PP1, AG1296 or LY294002. Thrombin induced NF-κB promoter activity and the formation of the p65–Akt–p300 complex, which were inhibited by AG1296, LY294002 or PP1. Finally, we have shown that thrombin stimulated in vivo binding of p300, Akt and p65 to the ICAM-1 promoter, which was reduced by AG1296, LY294002, SH-5 or PP1. These results show that thrombin induced ICAM-1 expression and monocyte adherence via a c-Src/PDGFR/PI3K/Akt/NF-κB-dependent pathway in HPAEpiCs. Increased understanding of the signalling mechanisms underlying ICAM-1 gene regulation will create opportunities for the development of anti-inflammatory therapeutic strategies.

You do not currently have access to this content.