BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e. PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+/CD24, and the expression of SMO and Gli1 in CD44+/CD24 tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

You do not currently have access to this content.