Obesity and high fat intake induce alterations in vascular function and structure. Aberrant O-GlcNAcylation (O-GlcNAc) of vascular proteins has been implicated in vascular dysfunction associated with cardiovascular and metabolic diseases. In the present study, we tested the hypothesis that high-fat diet (HFD)-mediated increases in O-GlcNAc-modified proteins contribute to cerebrovascular dysfunction. O-GlcNAc-protein content was increased in arteries from male Wistar rats treated with a HFD (45% fat) for 12 weeks compared with arteries from rats on control diet (CD). HFD augmented body weight [(g) 550±10 compared with 502±10 CD], increased plasma triacylglycerols [(mg/dl) 160±20 compared with 95±15 CD] and increased contractile responses of basilar arteries to serotonin [5-hydroxytryptamine (5-HT)] [(pD2) 7.0±0.1 compared with 6.7±0.09 CD] and the thromboxane analogue 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F (U-46619) [(pD2) 7.2±0.1 compared with 6.8±0.09 CD]. Of importance, increased levels of O-GlcNAc [induced by 24 h-incubation of vessels with a potent inhibitor of O-GlcNAcase (OGA), O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PugNAc)] increased basilar artery contractions in response to U-46619 [(pD2) 7.4±0.07 compared with 6.8±0.08 CD] and 5-HT [(pD2) 7.5±0.06 compared with 7.1±0.1 CD]. Vessels from rats on the HFD for 12 weeks and vessels treated with PugNAc displayed increased phosphorylation of p38 (Thr180/182) and extracellular signal-regulated kinase 1/2 (Erk1/2) (Ser180/221). Increased 5HT-induced contractions in arteries from rats on the HFD or in arteries incubated with PugNAc were abrogated by mitogen-activated protein kinase (MAPK) inhibitors. Our data show that HFD augments cerebrovascular O-GlcNAc and this modification contributes to increased contractile responses and to the activation of the MAPK pathway in the rat basilar artery.

You do not currently have access to this content.