In liver cirrhosis, the altered levels of vasoactive substances, especially endothelin-1 (ET-1) and nitric oxide (NO) lead to elevated intrahepatic resistance, increased portal-systemic collaterals and abnormal intra- and extra-hepatic vascular responsiveness. These derangements aggravate portal hypertension-related complications such as gastro-oesophageal variceal bleeding. Homocysteine, a substance implicated in cardiovascular diseases, has been found with influences on vasoresponsiveness and angiogenesis. However, their relevant effects in liver cirrhosis have not been investigated. In the present study, liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague–Dawley rats. In acute study, the results showed that homocysteine enhanced hepatic vasoconstriction to ET-1 but decreased portal-systemic collateral vasocontractility to arginine vasopressin (AVP). Homocysteine down-regulated hepatic phosphorylated endothelial NO synthase (p-eNOS) and p-Akt protein expressions. Inducible NOS (iNOS) and cyclooxygenase (COX)-2 expressions were up-regulated by homocysteine in splenorenal shunt (SRS), the most prominent intra-abdominal collateral vessel. In chronic study, BDL or thioacetamide (TAA) rats received homocysteine or vehicle for 14 days. The results revealed that homocysteine increased hepatic collagen fibre deposition and fibrotic factors expressions in both BDL- and TAA-induced liver fibrotic rats. Portal-systemic shunting and expressions of mesenteric angiogenetic factors [vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), PDGF receptor β (PDGFRβ) and p-eNOS] were also increased in BDL rats. In conclusion, homocysteine is harmful to vascular derangements and liver fibrosis in cirrhosis.

You do not currently have access to this content.