The polycystic ovary (PCO) syndrome (PCOS) is the most common cause of anovulatory infertility in women and is associated with several clinical disorders. Despite the great amount of research in the area, mechanisms involved in the genesis of this syndrome remain poorly understood. In a recent issue of Clinical Science (vol. 132, issue 7, 759-776), Wang and colleagues, highlight the important role of overactivated C-type natriuretic peptide (CNP) and natriuretic peptide receptor 2 (CNP/NPR2) system in preventing oocyte maturation and ovulation in PCOS mice model induced by androgen. Dehydroepiandrosterone (DHEA) treatment caused anovulation, high levels of androgen and estrogen receptors (AR and ER) in the ovary, high expression of CNP and natriuretic peptide receptor 2 (NPR2) in granulosa cells (GC), and an increase in testosterone and estradiol (E2) levels in sera. The high level of CNP/NPR2 was associated with oocyte meiotic arrest and very low ovulation rate. Treatment with human chorionic gonadotropin (hCG) or inhibitors of AR or ER reduced the level of CNP/NPR2, which resulted in meiotic resumption and ovulation. The article provided important information for understanding the effect of ovarian steroids on control of oocyte maturation and fertility and highlighted CNP/NPR2 as a specific pathway that is potentially involved in the ovulatory disruption in PCOS.

You do not currently have access to this content.