Abstract

Diabetic kidney disease (DKD) is among the most common complications of diabetes mellitus (DM), and remains the leading cause of end-stage renal diseases (ESRDs) in developed countries, with no definitive therapy yet available. It is imperative to decipher the exact mechanisms underlying DKD and identify novel therapeutic targets. Burgeoning evidence indicates that long non-coding RNAs (lncRNAs) are essential for diverse biological processes. However, their roles and the mechanisms of action remain to be defined in disease conditions like diabetes and DKD. The pathogenesis of DKD is twofold, so is the principle of treatments. As the underlying disease, diabetes per se is the root cause of DKD and thus a primary focus of therapy. Meanwhile, aberrant molecular signaling in kidney parenchymal cells and inflammatory cells may directly contribute to DKD. Evidence suggests that a number of lncRNAs are centrally involved in development and progression of DKD either via direct pathogenic roles or as indirect mediators of some nephropathic pathways, like TGF-β1, NF-κB, STAT3 and GSK-3β signaling. Some lncRNAs are thus likely to serve as biomarkers for early diagnosis or prognosis of DKD or as therapeutic targets for slowing progression or even inducing regression of established DKD. Here, we elaborated the latest evidence in support of lncRNAs as a key player in DKD. In an attempt to strengthen our understanding of the pathogenesis of DKD, and to envisage novel therapeutic strategies based on targeting lncRNAs, we also delineated the potential mechanisms of action as well as the efficacy of targeting lncRNA in preclinical models of DKD.

You do not currently have access to this content.