Abstract
Cardiac fibrosis is a common pathological feature of many cardiovascular diseases. The regulatory mechanisms of miRNAs in cardiac fibrosis are still unknown. Previous studies on miR-214-3p in cardiac fibroblasts reached contradictory conclusions. Thus the role of miR-214-3p in cardiac fibrosis deserves further exploration. Using a combination of in vitro and in vivo studies, we identified miR-214-3p as an important regulator of cardiac fibrosis, and the proliferation and activation of cardiac fibroblasts. We demonstrated that the expression of miR-214-3p is down-regulated in TGF-β1-treated myofibroblasts and transverse aortic constriction (TAC)-induced murine model. Additionally, miR-214-3pflox/flox/FSP1-cre mice and miR-214-3pwt/wt/FSP1-cre mice were subjected to TAC operation or sham operation, and the conditional knockout of miR-214-3p in cardiac fibroblasts aggravates TAC-induced cardiac fibrosis. In vitro, our results indicate that miR-214-3p is an important repressor for fibroblasts proliferation and fibroblast-to-myofibroblast transition by functionally targeting NOD-like receptor family CARD domain containing 5 (NLRC5). In conclusion, our findings show that the deficiency of miR-214-3p exacerbates cardiac fibrosis and reveal a novel miR-214-3p/NLRC5 axis in the regulation of cardiac fibrosis.