Renin cells are crucial for the regulation of blood pressure and fluid electrolyte homeostasis. We have recently shown that renin cells possess unique chromatin features at regulatory regions throughout the genome that may determine the identity and memory of the renin phenotype. The 3-D structure of chromatin may be equally important in the determination of cell identity and fate. CCCTC-binding factor (Ctcf) is a highly conserved chromatin organizer that may regulate the renin phenotype by controlling chromatin structure. We found that Ctcf binds at several conserved DNA sites surrounding and within the renin locus, suggesting that Ctcf may regulate the transcriptional activity of renin cells. In fact, deletion of Ctcf in cells of the renin lineage led to decreased endowment of renin-expressing cells accompanied by decreased circulating renin, hypotension, and severe morphological abnormalities of the kidney, including defects in arteriolar branching, and ultimately renal failure. We conclude that control of chromatin architecture by Ctcf is necessary for the appropriate expression of renin, control of renin cell number and structural integrity of the kidney.

You do not currently have access to this content.