The apelinergic system is widely expressed and acts through autocrine and paracrine signaling to exert protective effects, including vasodilatory, metabolic, and inotropic effects on the cardiovascular (CV) system. The apelin pathway’s dominant physiological role has delineated therapeutic implications for coronary artery disease, heart failure (HF), aortic aneurysm, pulmonary arterial hypertension (PAH), and transplant vasculopathy. Apelin peptides interact with the renin–angiotensin system (RAS) by promoting angiotensin converting enzyme 2 (ACE2) transcription leading to increased ACE2 protein and activity while also antagonizing the effects of angiotensin II (Ang II). Apelin modulation of the RAS by increasing ACE2 action is limited due to its rapid degradation by proteases, including ACE2, neprilysin (NEP), and kallikrein. Apelin peptides are hence tightly regulated in a negative feedback manner by ACE2. Plasma apelin levels are suppressed in pathological conditions, but its diagnostic and prognostic utility requires further clinical exploration. Enhancing the beneficial actions of apelin peptides and ACE2 axes while complementing existing pharmacological blockade of detrimental pathways is an exciting pathway for developing new therapies. In this review, we highlight the interaction between the apelin and ACE2 systems, discuss their pathophysiological roles and potential for treating a wide array of CV diseases (CVDs).

You do not currently have access to this content.