Parathyroid hormone (PTH) is secreted by the parathyroid glands (PTGs) and is an important hormone regulating mineral metabolism. Previous studies reported that high sodium diet will cause the increase in serum PTH, but the specific mechanism is unknown. Consequently, the present study aims to investigate the effects and mechanisms of high sodium on PTH synthesis and secretion from PTGs. We developed a tissue culture model using normal rat PTGs, discovered that sodium elicited and promoted concentration-dependent and time-dependent PTH secretion. Changes in sodium-associated transporters from PTGs incubated with high sodium were thoroughly examined. Increased expression of sodium-phosphate cotransporter Slc20a1 (also known as PiT-1) was observed. Further tests revealed that PiT-1 activated the NF-κB signaling pathway, resulting in increased IKKβ phosphorylation, IKBα degradation, and increased p65 phosphorylation followed by nuclear entry, which led to increased PTH transcription. Meanwhile, IKKβ phosphorylated SNAP23, promoting exocytosis and eventually led to increased PTH secretion. In conclusion, our findings indicate that PiT-1 plays an important role in the increased secretion and synthesis of PTH directly induced by high sodium under physiological conditions, and may provide a potential therapeutic target for secondary hyperparathyroidism (SHPT).

You do not currently have access to this content.