1. Isolated rat kidneys were perfused with a medium free of components of the renin-angiotensin system.
2. Angiotensin II, angiotensin I, tetradecapeptide renin substrate or rat plasma renin substrate added to the medium caused a dose-dependent increase of renal vascular resistance.
3. The vasoconstrictor effect of angiotensin II was inhibited by 1-Sar-8-Ala-angiotensin II (Saralasin). The inhibition was dose-dependent, being complete at the highest doses applied. In this dose range, Saralasin increased renal vascular resistance. Saralasin also inhibited vasoconstriction induced by tetradecapeptide renin substrate.
4. The vasoconstrictor effect of angiotensin I was suppressed by SQ 20881, up to a maximum of 87% depending on the dose. Similarly the increase in renal vascular resistance induced by a purified preparation of rat plasma renin substrate was inhibited by 55%; no effect on the action of tetradecapeptide renin substrate was observed.
5. The data suggest that, within the kidney, angiotensin I is converted into angiotensin II to the extent of about 1.25%. Since no angiotensin I is formed from synthetic renin substrate, the vasoconstrictor effect of the tetradecapeptide may be either due to a direct interaction with the angiotensin II receptor or the consequence of the intrarenal formation of angiotensin II. In contrast, the results with rat plasma renin substrate suggest that angiotensin I is formed from ‘natural’ substrate and is subsequently converted into angiotensin II.