1. The characteristics of absorption of individual amino acids from amino acid mixtures simulating casein and from enzymic hydrolysates of casein containing oligopeptides as well as free amino acids are known to be different. The differences, which are attributable to mucosal uptake of small peptides, involve more rapid absorption from the enzymic hydrolysates of certain amino acids which are relatively slowly absorbed from the amino acid mixtures. This could lead to more effective utilization of amino acids from the enzymic hydrolysates than from the amino acid mixtures.

2. To obtain further information bearing on this hypothesis, we have used a recently developed technique for portal cannulation in the guinea pig to make a preliminary investigation of amino acid concentrations in the portal venous plasma at intervals after the infusion into the duodenum of equivalent amounts of (a) an amino acid mixture simulating casein and (b) a partial enzymic (papain followed by kidney peptidases) hydrolysate of casein, the two preparations being infused in separate experiments.

3. For some amino acids, such as leucine, isoleucine, valine, phenylalanine and lysine, the curves after the enzymic hydrolysate were fairly similar to the corresponding curves after the amino acid mixture, though usually slightly lower. With other amino acids, the curves after the enzymic hydrolysate were very much lower than the corresponding curves after the amino acid mixture. With serine, glutamine, proline and glycine this discrepancy was particularly great.

4. The results cannot yet be fully explained, but their main features are explicable by the hypothesis that the lower amino acid concentrations in portal plasma after the enzymic hydrolysate are the result of entry of amino acids into the portal blood in peptide form, in which they would not be detectable by the analytical technique employed, and possibly also of more rapid clearance of amino acids from the blood during absorption of this preparation.

This content is only available as a PDF.
You do not currently have access to this content.