1. Human plasma was treated at 4°C with acid, trypsin, plasmin, streptokinase, urokinase, active Hageman factor fragment (β-XIIa) and β-XIIa-activated plasma prekallikrein (Fletcher factor). The conversion of inactive into active renin (activation) was studied in normal plasma (n = 10), Hageman factor-deficient plasma (n = 2), Fletcher factor-deficient plasma (n = 1) and plasminogen-free plasma (n = 4).
2. In normal plasma inactive renin was activated at pH 7·5 after treatment at pH < 4·0; at pH 3·3 the results were the same as with trypsin. This was also the case in plasminogen-free plasma. In Hageman factor-deficient plasma and in Fletcher factor-deficient plasma, however, the quantities of renin that were activated after acidification were much smaller than with trypsin. The addition of physiological amounts of active kallikrein to pH 3·3-pretreated Hageman factor-deficient plasma caused complete activation of renin. In contrast, the addition of active Hageman factor fragment to pH 3·3-pretreated Fletcher factor-deficient plasma had little or no effect.
3. Plasmin, streptokinase-activated plasminogen and urokinase-activated plasminogen activated inactive renin in pH 4·0-pretreated normal plasma as well as in pH 4·0-pretreated Hageman factor-deficient plasma and Fletcher factor-deficient plasma.
4. It is concluded that inactive renin is activated by two separate proteolytic pathways: one pathway depends on both Hageman factor and plasma prekallikrein, and the other pathway depends on plasminogen. In the Hageman factor-dependent pathway plasma kallikrein and not Hageman factor is the major activator of inactive renin. It is assumed that pH 3·3-treatment of plasma destroys the major inhibitors of kallikrein and that pH 4·0-treatment destroys the major inhibitor of plasmin.