1. An oral water load of 20 ml/kg body wt. was given to eight patients with nephrotic syndrome before and after remission of the syndrome, and to 13 healthy control subjects. Urine volume (D), free water clearance (Cwater), plasma concentrations of arginine vasopressin (AVP), angiotensin II (ANG II) and aldosterone (Aldo), were determined before and three times during the first 4 h after loading.

2. D and Cwater increased to a significantly lower level (P < 0.01) after water loading in patients with nephrotic syndrome than in control subjects, but D and Cwater were normal after remission of the syndrome. The maximum increase in Cwater (ΔCwater max.) was 1.07 ml/min (median) before remission and 7.93 ml/min after, compared with 8.01 ml/min in the control group.

3. Creatinine clearance (Ccr) increased significantly after remission (63 ml/min to 88 ml/min, P < 0.01), and the fractional excretion of sodium was enhanced. AVP was higher in the nephrotic syndrome both before (2.9 pmol/l) and after remission (2.9 pmol/l) compared with the control group (1.8 pmol/l). ANG II and Aldo did not change after remission and remained at the same level as in the control group.

4. The elevation in ΔCwatermax after remission was accompanied by an increase in Ccr in all patients and ΔCwatermax. and Ccr were significantly correlated (ρ = 0.600, n = 16, P < 0.05). No relationship was found between the change in ΔCwater max. and ANG II and Aldo.

5. AVP was significantly suppressed in patients with nephrotic syndrome before remission, but not after remission nor in control subjects, so that although AVP did not differ in nephrotic patients before and after remission, AVP cannot be excluded as a contributory factor to the reduction in Cwater in the nephrotic syndrome.

6. It is concluded that patients with nephrotic syndrome excrete an oral water load slower than control subjects and that the excretion rate is normal after remission of the syndrome. It is suggested that the normalization of Cwater may be attributed to an increase in glomerular filtration rate or a decrease in proximal tubular sodium reabsorption, although a possible role for AVP has not been excluded.

This content is only available as a PDF.
You do not currently have access to this content.