1. The administration of exogenous atrial natriuretic peptide (ANP) causes a natriuresis and diuresis in man, but this has, to date, only been demonstrated at plasma ANP concentrations within the high pathological or pharmacological ranges. Evidence that ANP acts physiologically requires the demonstration of a natriuretic effect when it is infused to recreate plasma concentrations similar to those observed after physiological stimuli.

2. We infused human α-ANP (1–28) at a calculated rate of 1.2 pmol min−1 kg−1 for 3 h into seven water-loaded normal subjects, achieving plasma ANP concentrations within the upper part of the physiological range. The subjects' resting plasma ANP concentration increased from 3.8 ± 1.5 to 20.9 ± 1.9 pmol/l.

3. The infusion of ANP caused a 60% increase of mean urinary sodium excretion from 111 ± 18 to 182 ± 30 μmol/min (P < 0.001) and a 28% increase of mean water excretion from 10.8 ± 0.8 to 13.8 ± 1.6 ml/min (P < 0.01).

4. The infusion suppressed mean plasma renin activity from 1.55 ± 0.10 to 1.17 ± 0.06 pmol of ANG I h−1 ml−1 (P < 0.001). Mean plasma aldosterone concentration (242 ± 16 basally and 215 ± 15 pmol/l at the end of ANP infusion) did not change significantly. Pulse rate and blood pressure were unchanged throughout the study.

5. No significant change in any of the variables mentioned above occurred during the infusion of the vehicle alone on a separate study day.

6. The demonstration that recreation of plasma concentrations of ANP within the physiological range by intravenous infusion induces a natriuresis provides new evidence supporting the role of ANP as a natriuretic hormone.

This content is only available as a PDF.
You do not currently have access to this content.