1. A randomized, partial-crossover study was conducted in uraemic patients with dialysis-associated anaemia and transfusional iron overload to evaluate the effects of desferrioxamine chelation therapy and of recombinant human erythropoietin treatment on hepatic iron storage determined by computed tomography, as well as by serum ferritin concentration and transferrin saturation.

2. Twenty-one haemodialysis patients with moderate iron overload, confirmed by values of serum ferritin concentration, transferrin saturation and hepatic computed tomography density exceeding 1000 μg/l, 45% and 68 Hounsfield units respectively, were randomly allocated to three groups and were followed for 12 months.

3. During the first 6 months group 1 (n = 7) received desferrioxamine chelation therapy (30 mg/kg intravenously three times a week) and group 2 (n = 7) underwent recombinant human erythropoietin treatment (36 units/kg intravenously three times a week). Thereafter, in the second 6 months of observation patients in group 1 were switched to receive recombinant human erythropoietin. Because of a poor response in the desferrioxaminetreated group in the initial 6 months, patients in group 2 continued on the maintenance dose of recombinant human erythropoietin (18 units/kg three times a week) until the end of the trial. Patients in group 3 (n = 7) were maintained on placebo throughout the study.

4. In comparison with placebo, recombinant human erythropoietin treatment, but not desferrioxamine chelation therapy, reduced serum ferritin concentration, transferrin saturation and hepatic computed tomography density, and was associated with a rise in haemoglobin and packed cell volume. Hepatic computed tomography density, serum ferritin concentration and transferrin saturation decreased in 13 out of 14 patients (93%) during treatment with recombinant human erythropoietin. However, when the changes in hepatic computed tomography density were compared with those in the biochemical indices, we observed that the decreases in serum ferritin concentration and transferrin saturation were much slower and delayed. More specifically, within 6 months of starting recombinant human erythropoietin treatment, hepatic computed tomography density was normalized in 13 out of 14 patients (93%), whereas serum ferritin concentration and transferrin saturation were within the normal limits in only two (14%) and six patients (43%), respectively.

5. In conclusion, the strategies for monitoring the iron status of haemodialysis patients with transfusional haemosiderosis may evolve to a new level of sophistication with the introduction of computed tomography scanning. This technique has the advantage of estimating directly the effect of recombinant human erythropoietin treatment on hepatic iron storage. Hepatic computed tomography density is complementary to serum ferritin concentration and transferrin saturation in monitoring the iron status of haemodialysis patients treated with recombinant human erythropoietin.

This content is only available as a PDF.
You do not currently have access to this content.