1. In order to investigate the molecular mechanisms determining the hypertrophic response of the ventricular myocardium to thyroid hormone administration, changes in left and right ventricular expression of the c-myc, c-fos and H-ras proto-oncogenes in response to treatment with 3,3′,5-tri-iodothyronine were defined.

2. Adult female Wistar rats were treated with daily subcutaneous injections of 3,3′,5-tri-iodothyronine (50 μg) for 1, 3, 7 or 14 days (n = 6 in each treatment group) and the results from 3,3′,5-tri-iodothyronine-treated animals were compared with those obtained from untreated controls (n = 6). Changes in the weight of the left and right ventricles in response to 3,3′,5-tri-iodothyronine treatment were measured; changes in expression of the c-myc, c-fos and H-ras proto-oncogenes were determined in parallel by measurement of specific messenger RNAs by Northern and dot hybridization, as well as changes in expression of β myosin heavy chain messenger RNA.

3. Treatment with 3,3′,5-tri-iodothyronine resulted in increases in both left and right ventricular weights after 3 days, an effect maintained up to 14 days. Despite an increase in left ventricular weight, levels of β myosin heavy chain, c-myc, c-fos and H-ras mRNAs in the left ventricle were unchanged; in contrast, an increase in right ventricular weight was associated with increased expression of β myosin heavy chain, c-myc and c-fos messenger RNAs.

4. These specific ventricular changes in gene expression, in the face of a hypertrophic response of both ventricles to 3,3′,5-tri-iodothyronine, suggest that the cardiac growth response to thyroid hormones reflects the well-documented secondary haemodynamic influences rather than direct gene regulatory actions of 3,3′,5-tri-iodothyronine at the transcriptional level on the genes studied. Changes in right ventricular proto-oncogene and β myosin heavy chain expression may in turn reflect an increase in right ventricular pressure load.

This content is only available as a PDF.
You do not currently have access to this content.