1. Renal responses to changes in renal perfusion pressure were studied in anaesthetized hyperthyroid (thyroxine, 300 μg day−1 kg−1) and hypothyroid (methimazole, 0.03% via drinking water) rats to determine whether an abnormality in the pressure-diuresis-natriuresis phenomenon is involved in the resetting of kidney function in these disorders.

2. There were no significant differences between control and hypothyroid rats with respect to the relationships between renal perfusion pressure and absolute or fractional water and sodium excretion. However, in hyperthyroid rats the pressure-diuresis-natriuresis mechanism was impaired.

3. Renal blood flow and glomerular filtration rate were well autoregulated and there were no differences between control and hypothyroid rats at every level of renal perfusion pressure. A significantly lower glomerular filtration rate was observed in hyperthyroid rats when data were expressed per gram kidney weight, but glomerular filtration rate was similar to that of control rats when normalized by body weight.

4. The shift in the pressure-diuresis-natriuresis response of hyperthyroid rats is mainly due to an increase in tubular reabsorption. Blunting of the renal pressure-diuresis-natriuresis mechanism in hyperthyroid rats may represent the functional resetting of the kidney necessary for sustained hypertension. However, a normal pressure-natriuresis response was observed in hypothyroid rats, in which blood pressure was markedly reduced.

This content is only available as a PDF.
You do not currently have access to this content.