1. Adrenomedullin is a recently discovered vasodilating and natriuretic peptide whose physiological and pathophysiological roles remain to be established. Like atrial natiuretic peptide adrenomedullin is expressed in the left ventricle. Ventricular expression of atrial natriuretic peptide is known to be markedly increased by volume or pressure overload. In this study we investigated whether ventricular expression of adrenomedullin is similarly stimulated under such conditions.

2. Ventricular adrenomedullin and atrial natriuretic peptide mRNA levels as well as those of a loading control mRNA (glyceraldehyde-3-phosphate dehydrogenase) were quantified by Northern blot analysis in (a) rats with severe post-infarction heart failure induced by left coronary ligation at 30 days post-surgery and (b) in rats with pressure-related cardiac hypertrophy induced by aortic banding at several time points (0.5, 1 and 4 h, and 1, 4, 7 and 28 days) after surgery. Levels were compared with those in matched sham-operated controls.

3. The mRNA level of atrial natriuretic peptide was markedly increased (8–10-fold) in the left ventricle of animals with post-infarction heart failure. In contrast, there was only a modest (40%) increase in the level of adrenomedullin mRNA. In rats with pressure-induced cardiac hypertrophy the ventricular level of atrial natriuretic peptide mRNA was again markedly increased (maximum 10-fold). The increase was first noticeable at 24 h post-banding and persisted until 28 days. In contrast, there was no change in adrenomedullin mRNA level compared with sham-operated rats at any time point.

4. Despite having similar systemic effects, the expression of adrenomedullin and atrial natriuretic peptide in the left ventricle is differently regulated. The findings imply distinct roles for the two peptides. The results do not support an important role for ventricular adrenomedullin expression in the remodelling process that occurs during the development of cardiac hypertrophy but suggest that ventricular adrenomedullin participates in the local and/or systemic response to heart failure

This content is only available as a PDF.
You do not currently have access to this content.