The myogenic response of small arteries and arterioles has been shown to contribute significantly to autoregulation in different vascular beds. It is characterized by a constriction of the vessel after an increase of transmural pressure and a dilation of the vessel after a decrease of transmural pressure. This review examines the evidence for the mechanisms of the myogenic response, with the aim of distinguishing between facts and hypotheses. It appears to be established that the myogenic response is stimulated by an alteration of vessel wall tension, that it does not require the presence of the endothelium and, for pressure increases, that it is accompanied by a membrane depolarization and an increase of the intracellular Ca2+ concentration, which depends largely on an influx of extracellular calcium via voltage-operated calcium channels. Under in vitro conditions, it may further be considered an established fact that the myogenic response can be modulated by transmitters, like noradrenaline, and factors released from the endothelium upon its activation. In contrast, many other aspects of the myogenic response remain hypothetical. Thus, the mechanism of the depolarization, its importance for the development of the myogenic response, the participation of other pathways for calcium influx, and the role of an intracellular calcium release in the myogenic response are still under debate. Furthermore, the participation of a variety of intracellular second messenger systems in the myogenic response, i.e. inositol trisphosphate, diacylglycerol, phospholipase A2, protein kinase C or 20-hydroxyeicosatetraenoic acid, is still unclear. Additionally, the roles of the pulsatility of the blood pressure and of remote signals from neighbouring vessel segments as well as of different metabolites are not clarified. This review suggests that while the primary mechanisms of the myogenic response are well understood, the details of the signalling pathways are still undefined. The clinical significance of the myogenic response remains to be determined.

This content is only available as a PDF.
You do not currently have access to this content.