Opening of potassium channels can cause hyperpolarization and relaxation of vascular smooth muscle cells. The aim of this work was to investigate the contribution of potassium channel activation to vasorelaxation in internal thoracic artery taken from patients undergoing coronary artery bypass graft surgery. Relaxations to carbachol and sodium nitroprusside were studied in isolated rings of internal thoracic artery in the absence and presence of nitric oxide synthase inhibitors and potassium channel blockers. The nitric oxide synthase inhibitors Nω-nitro-⌊-arginine methyl ester and NG-monomethyl-⌊-arginine abolished relaxations to carbachol. Relaxations to both carbachol and sodium nitroprusside were attenuated in the presence of raised extracellular potassium and the potassium channel blockers charybdotoxin, iberiotoxin and tetraethylammonium. Neither apamin nor glibenclamide modified relaxation. ODQ (1H-[1,2,4]oxadiazolol-[4,3a] quinoxalin-1-one), an inhibitor of soluble guanylate cyclase, abolished relaxation to carbachol in rings from some but not all subjects. These results suggest that potassium channel opening may make a small contribution to endothelium-dependent vasorelaxation in internal thoracic artery. The potassium channels had characteristics consistent with those of large-conductance calcium-dependent potassium channels.

This content is only available as a PDF.
You do not currently have access to this content.