Endothelial vasomotor function is impaired in a variety of disorders representing both early and late stages of atherosclerosis. There is experimental evidence for enhanced vascular angiotensin-converting enzyme (ACE) activity in these disorders. We explored whether enhanced vascular ACE activity accounts for endothelial dysfunction in experimental hypertension. Hypertension was induced in rats by coarctation of the aorta. At 2 weeks post-operation, the animals were randomly divided into groups receiving the ACE inhibitor quinapril (2.0 mgċkg-1ċday-1), the angiotensin type-1 receptor antagonist losartan (3.0 mgċkg-1ċday-1), the B2 kinin receptor antagonist icatibant (0.4 mgċkg-1ċday-1), quinapril plus icatibant, losartan plus icatibant, or no drug. Analyses were performed 4 weeks post-operation. None of the drug treatments had any significant effect on blood pressure. ACE activity was nearly doubled in aortae from untreated hypertensive rats as compared with sham-operated rats. Quinapril reduced ACE activity in aortae from hypertensive rats by 75%, losartan caused a 40% decrease, and icatibant had no effect. Endothelium-dependent, nitric oxide-mediated vasodilator responses studied in vitro were impaired by 40% in aortae from untreated hypertensive rats as compared with sham-operated rats. Both quinapril and losartan restored endothelial vasomotor function in aortae from hypertensive rats. Co-applied icatibant negated the effects of quinapril, but not those of losartan. The level of endothelial NO synthase (eNOS) mRNA determined by competitive RNA PCR was decreased by half in aortae from untreated hypertensive rats as compared with sham-operated rats. Quinapril induced an increase in the eNOS mRNA level of 350% in aortae from hypertensive rats, which was negated by co-applied icatibant. Losartan restored eNOS mRNA expression in aortae from hypertensive rats to normal levels, and this effect was not modified by co-applied icatibant. These findings suggest that enhanced vascular ACE activity accounts for endothelial vasomotor dysfunction by impairing the bioavailability of endothelium-derived NO. Both enhanced formation of angiotensin II and enhanced metabolism of bradykinin might account for a vascular deficiency of bioactive NO.
Skip Nav Destination
Article navigation
Research Article|
June 16 1999
Enhanced angiotensin-converting enzyme activity and impaired endothelium-dependent vasodilation in aortae from hypertensive rats: evidence for a causal link
Regina M. GOETZ;
1Institute of Pathophysiology, University of Halle, MagdeburgerStr. 18, 06097 Halle, Germany
Correspondence: Dr R. M. Goetz, University College London, Rayne Institute, Department of Molecular Medicine, 5 University St., London WC1E 6JJ, U.K.
Search for other works by this author on:
Juergen HOLTZ
Juergen HOLTZ
1Institute of Pathophysiology, University of Halle, MagdeburgerStr. 18, 06097 Halle, Germany
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8736
Print ISSN: 0143-5221
The Biochemical Society and the Medical Research Society © 1999
1999
Clin Sci (Lond) (1999) 97 (2): 165–174.
Citation
Regina M. GOETZ, Juergen HOLTZ; Enhanced angiotensin-converting enzyme activity and impaired endothelium-dependent vasodilation in aortae from hypertensive rats: evidence for a causal link. Clin Sci (Lond) 1 August 1999; 97 (2): 165–174. doi: https://doi.org/10.1042/cs0970165
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.