This study examines the influence of hypertension on neuronal nitric oxide (NO) release and its modulation by protein kinase C (PKC). For this purpose, mesenteric segments without endothelium were obtained from Wistar–Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs), and neurogenic NO release induced by electrical field stimulation (EFS) was examined in these segments. EFS induced frequency-dependent contractions. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) and the sensorial neurotoxin capsaicin increased EFS-induced contractions in SHR segments, but did not affect these contractions in segments from WKY rats. In segments from SHRs, the increase in EFS-induced response by capsaicin was further increased by the combination of capsaicin and L-NAME. EFS-induced contractions in SHR arteries were unaltered by the protein synthesis inhibitor cycloheximide or by 2-amine-5,6-dihydro-6-methyl-4H-1,3-tiazine (AMT), an inhibitor of inducible NO synthase, and increased by the guanylate cyclase inhibitor Methylene Blue. In these arteries, capsaicin plus the PKC inhibitor calphostin C increased the contractions elicited by EFS; the addition of L-NAME did not affect this increase. Phorbol 12,13-dibutyrate (PDBu) did not modify the response to EFS in these arteries pretreated with capsaicin, although a combination of PDBu and L-NAME was effective. These results indicate that, in mesenteric arteries, EFS induces the release of NO from perivascular nitrergic nerves and of neuropeptides from sensory nerves, but only in hypertensive rats. The NO released is synthesized by constitutive neuronal NO synthase in a manner that is positively modulated by PKC, an enzyme that seems to be activated in hypertension.

This content is only available as a PDF.
You do not currently have access to this content.