Although activation of the endothelin (ET) system contributes to pulmonary hypertension, modifications of the cardiopulmonary ET system and its responses to chronic ET receptor blockade are not well known. To investigate this, rats were injected with monocrotaline (60 mg/kg intraperitoneal) or saline, followed with treatment with the selective ETA receptor antagonist LU135252 (LU; 50 mg·kg-1·day-1) or with saline. After 3 weeks, haemodynamics, cardiac hypertrophy, ET-1 levels and cardiopulmonary ET-receptor-binding profile were evaluated. Monocrotaline (n=7) elicited marked pulmonary hypertension and right ventricular hypertrophy compared with controls (n=8). Both variables were substantially attenuated by LU therapy (n=8; P<0.05 for both). After monocrotaline, right ventricular ET-1 levels were more significantly increased than in the left ventricle (+198% compared with +127%; P<0.05). ETB receptor density was augmented (3-fold) in the right ventricle, whereas that of ETA receptors was not affected. LU treatment also significantly attenuated these alterations (P<0.05). In the lungs, ET-1 levels were not increased after monocrotaline, whereas the balance of ETB to ETA receptors was altered, with a trend toward a lower percentage of ETB than in the control rats. LU treatment did not affect these variables in the lungs. Therefore monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy are associated with the up-regulation of ET-1 and ETB receptors in the right ventricle. These alterations are attenuated with the reduction of pulmonary hypertension and right ventricular hypertrophy after chronic blockade of the ETA receptors, supporting the role of the ET system in right ventricular hypertrophy.

This content is only available as a PDF.