Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.

INTRODUCTION

Innate immunity cells represent extremely powerful host defence mechanisms with fine-tuning ability to limit inappropriate damage to affected tissues in which such responses take place. There are no doubts about an extensive cross-talk between the innate and adaptive immune mechanisms and current data presenting new innate lymphoid populations support the hypothesis that innate and adaptive systems do not represent completely separate entities (Figure 1). Most of the cell–cell interactions between immune cells are mediated by cytokines released from cells in response to different stimuli. Cytokines are involved in both the activation and inhibition of cell functions. They regulate their differentiation, normal turnover or fast migration into the injury site and reparation processes. In this respect, defective regulation of the cytokine network seems to play an important role in the pathogenesis of many diseases and clinical settings. Modern cytokine-targeted therapies with monoclonal antibodies, soluble receptors or small-molecule inhibitors promise new possibilities for patients resistant to standard pharmacological regimes.

Nomenclature of immune cells

Figure 1
Nomenclature of immune cells

Innate and adaptive immunity cells collaborate with each other very closely and some of the cells share characteristics of both systems.

Figure 1
Nomenclature of immune cells

Innate and adaptive immunity cells collaborate with each other very closely and some of the cells share characteristics of both systems.

COMPONENTS OF INNATE IMMUNITY

Mucosal surfaces covering approximately 300 m2 of the body/environmental interface are not only a mechanical barrier, but regulate many of the functions of ‘professional’ immune cells [1]. Epithelial cells represent an important source of cytokines used for the amplification or inhibition of immune or inflammatory reactions [2]. By the release of multiple chemokines, epithelial cells regulate the influx of immune cells to the site of injury [3]. In vitro data suggest that unstimulated epithelial cells constitutively express chemokine mRNA attracting neutrophils, whereas, for mononuclear phagocytes and lymphocytes, stimulation with pro-inflammatory cytokines is required [4]. Furthermore, cell–cell interactions of recruited monocytes with the epithelium seem to be critical for their final differentiation into tissue macrophages [5]. Under steady-state conditions, epithelial cells considerably down-regulate immune mechanisms and dampen inflammatory responses [6]. The plasticity of epithelial cells enabling their transition into myofibroblasts, the epithelial–mesenchymal transition, is important for the reparation processes but is also involved in fibrosing mechanisms associated with immunopathological reactions [7]. Defective regulation of mucosal responses seems to play a key role in the pathogenesis of IBD (inflammatory bowel disease) [8], bronchial asthma [9], interstitial lung diseases or rejection of kidney allografts [10].

Monocytes, macrophages and dendritic cells

Peripheral blood monocytes and their tissue-differentiated forms, macrophages and DCs (dendritic cells), represent variations of maturation/activation stages of mononuclear phagocytes. In the peripheral blood, different subsets might be distinguished based on the membrane expression of CD14 and CD16 antigens. Although ‘traditional’ monocytes are characterized by a very high expression of CD14 and the absence of CD16 on their surface, a limited subpopulation of CD14+CD16+ monocytes can be identified. These monocytes are smaller and express HLA-DR and CD43 at a higher density [11]. Similarities of gene expression profiles with macrophages and DCs [12], together with shortened telomere length [13], indicate that these might be senescent repeatedly activated monocytes. Furthermore, the capacity of CD14+CD16+ monocytes to preferentially produce the pro-inflammatory cytokine TNFα (tumour necrosis factor α) with a limited capability to release the anti-inflammatory cytokine IL (interleukin)-10 [14] suggest that these cells represent pro-inflammatory monocytes. Differentiation of human monocytes into macrophages in vitro has been found to be associated with the modulation of more than 800 different genes [15] and might be modulated by direct interactions of mononuclear phagocytes with other cells [5] or by soluble factors, particularly cytokines. Typically, tissue macrophages can polarize into the inflammatory M1 subset, with potent antimicrobial activity and the ability to produce the pro-inflammatory cytokines TNFα, IL-12, and IL-1 β, or the M2 subset [16], which is involved in tissue surveillance and reparative processes by the production of IL-10 and/or TGFβ (transforming growth factor β), down-regulating immune responses (Figure 2). DCs are the most potent antigen-presenting cells. The two subsets, myeloid DCs and plasmocytoid DCs, differ in their origin and the expression of PRRs (pattern recognition receptors), e.g. TLRs (Toll-like receptors), but both are able to induce antigen-specific proliferation of naive T-cells. In humans, plasmocytoid DCs, producing high levels of IFNα (interferon α), and two types of myeloid DCs (CD1c compared with CD141+) can be distinguished [17]. In addition to the role of DCs in the induction of adaptive responses, these cells also activate NK (natural killer) cells and NKT cells (natural killer T-cells) [18]. The CD103+ subpopulation of DCs with a capacity to induce the expansion of Treg-cells (regulatory T-cells) has been described in intestinal mucosa and might play a role in the mechanism of oral tolerance [19].

Subpopulations of macrophages

Figure 2
Subpopulations of macrophages

Macrophages respond to environmental stimuli by polarization into two functional subpopulations: (i) pro-inflammatory M1 macrophages, with potent effector activities, and (ii) M2 macrophages, which inhibit immune responses.

Figure 2
Subpopulations of macrophages

Macrophages respond to environmental stimuli by polarization into two functional subpopulations: (i) pro-inflammatory M1 macrophages, with potent effector activities, and (ii) M2 macrophages, which inhibit immune responses.

Neutrophils

Neutrophils are potent phagocytic cells protecting the host from invading micro-organisms by multiple antimicrobial substances present in cytotoxic granules [20] and by neutrophil extracellular traps [21]. The failure of neutrophils to clear pathogens from mucosal surfaces leads to bacterial colonization and also contributes to the persistence of inflammation in affected tissue. Dysfunction of neutrophils at multiple stages during sepsis leads to the overexpression of pro-inflammatory cytokines and mediators involved in tissue damage and multiple organ failure [22]. In addition to their purely effector functions, neutrophils regulate the influx of monocytes and DCs by the release of chemokines [23]. Neutrophils are also associated with the adaptive Th17 immune response by playing a role in either the effector or regulatory phases [24].

Eosinophils

Eosinophils are multifunctional cells required for defence against helminth parasitic infections [25] and are involved in the pathogenesis of allergic diseases [26]. It has been suggested that tissue eosinophilia may result in fibrotic changes in the parenchyma by induction of fibroblast proliferation [27] and collagen deposition [28]. These changes may play a role in the pathogenesis of cardiac fibrosis as a complication of hypereosinophilic syndromes [29], strictures accompanying eosinophilic esophagitis [30], or thickening of basal membrane in patients with bronchial asthma [31]. Furthermore, eosinophils and their mediators ECP (eosinophilic cationic protein) and MBP (major basic protein) are associated with the ability to promote the coagulation of plasma, and tissue factor production might be relevant to the occurrence of thrombotic complications in patients with blood eosinophilia [32].

Basophils and mast cells

Peripheral blood basophils and tissue-resident mast cells share many characteristics, including the membrane expression of high-affinity IgE receptor [FceRI (IgE Fc receptor I)], TLR2 and TLR4, and the ability to release aggressive mediators immediately upon activation, but differ in several specific membrane markers [33]. Nevertheless, both cell types are thought to originate from a common progenitor [34]. The function of mast cells and basophils has always been associated with their role in the pathogenesis of allergic disorders, but these cells might also be involved in combating parasitic, bacterial or viral infections [35]. Furthermore, experimental data suggest the involvement of mast cells in the pathogenesis of autoimmune diseases [36], cancer [37] and transplantation tolerance [38]. Although mast cells represent the first line of immune response and their subepithelial location predisposes them to immediate activation, basophils seem to be recruited in the course of allergic reaction [39].

Natural killer cells and natural killer T-cells

NK cells are innate immune cells involved in the defence against cancer cells and infectious agents by killing the target without prior sensitization after the recognition through unique NK receptors recognizing self-MHC class I or II molecules, which can either inhibit or induce the effector functions of NK cells [40]. Previous findings have suggested that NK cells share some features of the adaptive immune system, particularly with CD8 cytotoxic cells, since they express antigen-specific receptors, proliferate after their induction and have a capability to differentiate into memory cells [41]. NKT cells are a subset of T-cell that share receptor structures and functions with conventional T-cells (CD3) and NK cells (CD16 and CD56). NKT cells preferentially recognize lipid antigens in the context of the CD1d molecule (MHC class I-like) and consists of two subsets: (i) type I cells expressing invariant TCR (T-cell receptor), which are involved in tumour surveillance; and (ii) type II cells utilizing diverse TCR gene segments, which suppress anti-tumour immune responses [42].

Innate lymphoid cells

ILCs (innate lymphoid cells) have been described in addition to the already well-characterized NK and NKT cells and are new populations of innate cells originating from lymphoid linkage. These cells, identified by different laboratories as natural helper cells [43], nuocytes [44], innate type 2 helper cells [45] or multipotent progenitor type 2 cells [46], are activated by the epithelial-cell-derived cytokines IL-23 or IL-25 and promote Th2 cytokine responses. All four populations do not express lineage-specific markers of T- and B-cells, macrophages, DCs, NK cells or neutrophils, and their original physiological role might be to protect the host against helminth parasites. Alternatively, a classification based on cytokine profiles has been proposed, including the ILC1 subset of IFNγ-producing NK cells, the ILC2 subset (nuocytes and NK cells), which produce IL-13 to eliminate extracellular parasites, the ILC17 subset producing IL-17, IL-22 and TNFα and restricted to mucosal tissues, together with the ILC22 subset preferentially releasing IL-22 [47].

CYTOKINES OF INNATE IMMUNE CELLS RESPONDING TO INJURY: ALARMINS, PRO-INFLAMMATORY CYTOKINES AND CHEMOKINES

Epithelial cells and mucosal macrophages, the main source of pro-inflammatory cytokines, represent the first line of host defence against invading micro-organisms and other stimuli leading to tissue injury. These cells are able to recognize conserved molecules on the surface of micro-organisms by various families of PRRs, such as membrane TLRs or intracellular NLRs [NOD (nucleotide oligomerization domain)-like receptors], and initiate recruitment and activation of neutrophils and other immune cells at the site of injury. Alarmins and pro-inflammatory cytokines initiate the cascade of events by inducing the release of chemokines from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells (Figure 3).

Inflammatory reaction and initiation of immune responses

Figure 3
Inflammatory reaction and initiation of immune responses

Innate immune cells have the capacity of immediate reaction to pathogenic stimuli by releasing signalling alarmins, defensins, pro-inflammatory cytokines and chemokines, attracting different populations of immune cells into the site of injury. These molecules represent very attractive targets of therapeutic intervention.

Figure 3
Inflammatory reaction and initiation of immune responses

Innate immune cells have the capacity of immediate reaction to pathogenic stimuli by releasing signalling alarmins, defensins, pro-inflammatory cytokines and chemokines, attracting different populations of immune cells into the site of injury. These molecules represent very attractive targets of therapeutic intervention.

Alarmins

Alarmins are structurally heterogeneous peptides or protein mediators released immediately by degranulation or cell injury/death from phagocytes [48] and epithelial cells [49]. Currently identified alarmins include defensins [50], cathelicidins [51], eosinophil-associated ribonucleases [52], HMGB (high-mobility group box) proteins (e.g. HMGB1) [53], granulysin [54] and iron-binding proteins (e.g. lactoferrin) [55]. Alarmins are involved mainly in the recruitment and activation of phagocytic cells and maturation of DCs, and are considered to be one form of DAMPs (damage-associated molecular patterns) [56]. In addition to their pro-inflammatory role [50], alarmins may provide direct antibacterial activity. HMGB1 production seems to be critical for DC maturation, migration to lymphoid tissues and T-cell polarization into the Th1 phenotype [57].

Pro-inflammation cytokines

TNF superfamily

TNFα is a pleiotrophic pro-inflammatory cytokine and the most extensively studied member of the family involving 50 structurally related soluble and membrane proteins: the TNF superfamily [58]. It is produced mainly by activated macrophages [59], but can also be induced in a broad variety of other cells types. The primary function of TNFα is the up-regulation of multiple pro-inflammatory proteins (chemokines, cytokines, adhesion molecules, growth factors, etc.) by activation of transcription factor NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) pathways [60]. In addition to its local effects, TNFα is directly linked to the induction of cachexia [61], is associated with chronic diseases, and affects thermoregulation [62], lipid metabolism [63], blood flow [64], coagulation [65] and insulin resistance [66]. Up-regulation of TNFα is implicated in the pathogenesis of rheumatoid arthritis [67], IBD [68], psoriasis [69], COPD (chronic obstructive pulmonary disease) [70] and other chronic inflammatory disorders. Furthermore, the immediate systemic generation of TNFα at high levels might lead to the development of a shock reaction [71]. Anti-TNF therapy using either chimaeric (infliximab) or human (adalimumab or golimumab) monoclonal antibodies is highly effective in the treatment of IBD [72,73] and, together with the recombinant soluble TNF receptor etanercept, is also used to treat patients with rheumatoid arthritis [74] and different autoimmune diseases [75,76]. Another prospective TNF blocker for the treatment of rheumatoid arthritis is certolizumab pegol, a recombinant, PEGylated antigen-binding fragment of a humanized monoclonal antibody that selectively targets and neutralizes TNFα [77].

TRAIL (TNF-related apoptosis-inducing ligand; TNSF10) is a member of TNF family expressed by most cells as CD253 which, after proteolytic cleavage from the membrane, forms a soluble cytokine selectively cytotoxic in inducing apoptosis in tumour cells with minimal or no toxicity in normal tissues [78]. In this respect, the molecule and agonistic anti-TRAIL antibodies are among the potential targets of cancer therapy [79].

RANKL (receptor activator of NF-κB ligand; TNSF11), also known as TRANCE (TNF-related activation-induced cytokine), is expressed by osteoblasts [80] as the membrane molecule CD254 to activate osteoclasts and, in its soluble form, seems to be important for the differentiation of DCs [81]. RANKL inhibitors, such as denosumab, are currently tested in patients with osteoporosis, multiple myeloma and bone metastases [82].

TWEAK (TNF-like weak inducer of apoptosis; TNSF12) is a multifunctional cytokine with mainly pro-inflammatory and pro-angiogenic properties, which regulates the migration of endothelial cells and provides cytotoxicity against some cells [83]. TWEAK induces the expression of ICAM-1 (intercellular adhesion molecule-1) and E-selectin on endothelial cells [84] and promotes fibroblast proliferation [85]. Up-regulation of IL-17 by TWEAK has been suggested to play a role in the pathogenesis of rheumatoid arthritis [86], and a Phase II trial with a neutralizing anti-TWEAK antibody is currently in progress in patients with lupus nephritis [87].

APRIL (a proliferation-inducing ligand; TNSF13) is expressed in monocytes, macrophages, DCs and T-cells, but may also be secreted from non-immune cells, especially tumour cell lines, and play a critical role in differentiation and activation of B-cells [88]. In experimental models, APRIL was found to suppresses both allergic lung inflammation with the production of Th2 cytokines [89] and arthritis mediated by collagen-specific antibodies [90]. A humanized anti-APRIL antibody is currently being tested in pre-clinical studies [91], including a primate model of multiple sclerosis [92].

BAFF (B-cell-activating factor belonging to the TNF family; TNSF20) is a TNF-related cytokine produced and secreted mainly by mononuclear phagocytes (monocytes, macrophages and DCs), but may also be released from epithelial cells, including airway or gut epithelial cells [93]. In addition to the role of BAFF in activating B-cells and immunoglobulin isotope switching, the cytokine drives the expansion of Th1 and Th17 pathways while inhibiting Th2 responses [94]. BAFF, together with APRIL, are two innate cytokines of critical importance for the regulation of antibody production during the adaptive immune response, and the monoclonal anti-BAFF antibodies belimumab and tabalumab are being clinically tested in patients with autoimmune diseases [95] and are being considered for use in kidney transplantation [96].

LIGHT (an acronym derived from: homologous to lymphotoxins, inducible expression, competes with HSV glycoprotein D for HVEM, a receptor expressed on T-lymphocytes; TNSF14/CD258) is inducible on the membrane of most immune cells, but may also be released from platelets, vascular smooth muscle cells and endothelial cells [97]. This cytokine activates STAT3 (signal transducer and activator of transcription 3) signalling [98] and seems to be important for memory T-helper-cell-mediated activation of DCs [99].

Interleukins

IL-1 family members are among the most potent cytokines produced by innate immune cells. IL-1, a multifunctional pro-inflammatory cytokine, was the first interleukin to be described [100]. Both IL-1α (IL-1F1) and IL-1β (IL-1F2) are synthesized as precursors (pro-IL-1α and pro-IL-1β). The mature form of IL-1α, cleaved by calpain [101] from pro-IL-1α, remains mostly bound to a plasma membrane, whereas IL-1 β, processed by caspase 1 (IL-1β-converting enzyme) [102], is released in its biologically active form. The intracellular signalling involves adaptor proteins MyD88 (myeloid differentiation factor 88), IRAK (IL-1-receptor-associated kinase) and TRAF6 (TNF-receptor-associated factor 6), and leads to the activation of NF-κB, JNK (c-Jun N-terminal kinase) and MAPK [103]. IL-1β thus shares multiple pro-inflammatory effects (induction of chemokines, adhesion proteins, etc.) with TNFα and both cytokines potentiate each other [104]. Therapeutic anti-(IL-1) antibodies use different mechanisms to block the cytokine: canakinumab competes for binding to IL-1R (IL-1 receptor), whereas gevokizumab is claimed to modulate IL-1β bioactivity and receptor signalling [105]. Canakinumab has a promising preliminary safety and efficacy profile in patients with rheumatic diseases [106] and urticarial vasculitis [107], and is also being evaluated as an anti-inflammatory agent in cardiovascular diseases [108] and Type 1 diabetes [109]. Furthermore, rilonacept, an anti-(IL-1) fusion protein, is currently tested in patients with active systemic juvenile idiopathic arthritis [110], and a new monoclonal antibody directed against the IL-1R and a neutralizing anti-(IL-1α) antibody are in clinical trials [111].

IL-1Ra (IL-1 R antagonist; IL-1F3), another IL-1 family member, binds with high avidity to IL-1Rs, but fails to activate cells [112]. In this respect, IL-1Ra is a potent competitive inhibitor of the pro-inflammatory effects of IL-1β, and the recombinant protein anakinra has been successfully used to treat autoinflammatory diseases such as Schnitzler's syndrome [113] or Mediterranean fever [114].

IL-18 (IL-1F4), originally described as an IFNγ-inducing factor, is produced mainly by epithelial cells [115] and mononuclear phagocytes [116]. Similarly to IL-1β, an inactive IL-18 precursor peptide is cleaved by caspase 1 or granzyme B [117] to gain biological activity and the signalling pathways resemble those of IL-1 [118]. Serum levels of IL-18 are up-regulated in Th1-predominant diseases such as pulmonary [119] or kidney allograft rejection [120], as well as in Th2-predominant diseases including bronchial asthma [121]. Increased serum concentrations of IL-18 are common in active coeliac disease, [122], ANCA (anti-neutrophil cytoplasmic antibody)-positive vasculitis [123] or Type 1 diabetes [124]. The overproduction of IL-18 may also be induced by non-specific factors such as haemodialysis [125]. In patients with metastatic melanoma, intravenously administered recombinant human IL-18 was well-tolerated, but had limited activity when used as a single agent [126], and further studies are in progress. IL-18BP (IL-18-binding protein), a natural inhibitor of IL-18, binds the cytokine with high affinity and prevents its interaction with cell-membrane receptors. In a model of renal ischaemia/reperfusion injury, exogenous IL-18BP inhibited inflammation and protected the tubular epithelium and endothelium [127]. On the other hand, up-regulated IL-18BP secretion from prostate cancer cells might be one of the mechanisms used by tumours to escape immune surveillance [128].

IL-33 (IL-1F11), a cytokine associated with Th2 responses [129], is preferentially expressed in vascular endothelial cells [130], with constitutive expression also in epithelial surfaces and lymphoid organs [131]. The mechanisms of IL-33 release are not completely elucidated, but current findings support the hypothesis that most of the soluble IL-33 originates from destroyed cells, and the cytokine thus might be seen functionally as a member of the alarmin family intended for signalling of tissue injury [132]. In addition, experimental data with recombinant IL-33 suggested Th2-polarizing effects by activation of basophils [133], mast cells [134], eosinophils [135], Th2 lymphocytes and ILCs with potent IL-5 induction [136]. IL-33-activated DCs prime naive T-cells to release the Th2 cytokines IL-5 and IL-13, but not IL-4 [137]. A recent study also showed the potentiation of IgE production by IL-33 [138]. In contrast with the Th2-inducing effects, IL-33 may also potentiate Th1 responses, since it directly interacts with invariant NKT cells and NK cells to induce IFNγ production [139] and stimulates effector activity of CD8 cytotoxic T-cells [140]. Anti-(IL-33) antibodies have been shown to have a therapeutic effect by suppressing mucosal inflammation in murine models of bronchial asthma [141] and allergic rhinitis [142].

IL-36α (IL-1F6), IL-36 β (IL-1F8), IL-36γ (IL-1F9) and IL-36Ra (IL-36 receptor antagonist; IL-1F5) are structurally and functionally related cytokines induced in keratinocytes by TNFα and are capable of promoting the expression of antimicrobial peptides and matrix metalloproteinases [143]. A recent study indicated IL-36R (interleukin 36 receptor)-deficient mice to be resistant in a model of experimental psoriasis [144]. In a myeloid cell line, IL-36β and IL-36γ were found to be induced by interaction with epithelial cells [145]. IL-37 (IL-1F7) is an anti-inflammatory cytokine [146] produced in adipose and liver tissue [147]. Its ability to suppress the production of pro-inflammatory cytokines from macrophages is dependent on Smad3 activation [148].

IL-38 (IL-1F10) is another anti-inflammatory cytokine inhibiting the release of IL-17 and IL-22 from T-cells and shares the receptor with IL-36 and IL-36Ra [149].

IL-6 is a pleiotropic cytokine produced mainly by monocytes/macrophages [150] and epithelial cells [151], but may also be induced in endothelial cells and fibroblasts [152], bone marrow cells [153], neutrophils [154], mast cells [155] or T- and B-cells [156,157]. IL-6 regulates physiological functions of multiple immune and non-immune cell types and represents a critical interphase between immune, endocrine and neural systems. In addition to differentiation of myeloid cells [158] and activation of NK cells [159], IL-6 affects adaptive immune responses when it stimulates the differentiation of T-cells [160] and B-cells and promotes imunoglobulin production [161]. The systemic effects of IL-6 involve the up-regulation of body temperature [62] and production of acute-phase proteins in hepatocytes [162]. An anti-(IL-6) antibody, tocilizumab, has been found to inhibit structural joint damage and improve physical function in patients with rheumatoid arthritis [163,164] with a good chance of long-term clinical remission [165]. Tocilizumab was also effective in severe persistent systemic juvenile idiopathic arthritis [166], giant cell arteritis [167] and neuromyelitis optica [168], and down-regulated inflammation in amyotrophic lateral sclerosis [169]. Sirukumab, another human anti-(IL-6) monoclonal antibody, was well-tolerated in a Phase I study in patients with cutaneous or systemic lupus erythematosus [170]. Sarilumab, an anti-[IL-6R (IL-6 receptor)] antibody, is currently in two Phase III studies as a treatment for rheumatoid arthritis [171].

Other IL-6-related cytokines, IL-11, LIF (leukaemia inhibitory factor), oncostatin M, CNTF (ciliary neurotrophic factor) and cardiotrophin-1, are similarly multifunctional and exhibit overlapping biological functions [172] in immune and non-immune cells. IL-31, a recent member of the IL-6 cytokine family, is expressed mainly by mast cells and Th2 lymphocytes during the late phase of allergic inflammation, and provides a direct pruritogenic effect in the skin and induction of pro-inflammatory cytokines in mononuclear phagocytes [173].

Interferons

IFNs, named after their ability to ‘interfere’ with viral replication, are cytokines with potent immunomodulatory effects. According to their structure and chromosomal location, three types of IFNs have been described. Type I IFNs (IFNα and IFNβ) are produced by almost all cell types in response to PRR signalling, with macrophages and epithelial cells being the main source [174]. These cytokines promote the activation of DCs, activate T-cells contributing to Th1 differentiation, activate effector functions of CD8+ cytotoxic T-cells and regulate the recruitment of immune cells by the induction of chemokines [175]. Simultaneously, there are data supporting the concept that Type I IFNs may also have an anti-inflammatory capacity [176] and inhibit some of the effects of IFNγ [177]. IFNα treatment is beneficial in patients with viral hepatitis B and C [178], and multiple subtypes of IFNα (13 subtype genes on chromosome 9) with different receptor affinities and biological effects have been extensively studied with respect to their potential anti-viral or immunomodulatory activity [179]. Some concerns about its use need to be addressed in patients with depressive syndromes, which might worsen in some subjects after IFNα therapy [180]. Type II IFNs are constituted by a single cytokine, IFNγ, which is produced preferentially by NK cells, NKT-cells and activated Th1 cells.

IFNγ is a potent activator of effector functions in phagocytic cells by increasing their lysosomal enzymatic activity and oxidative burst [181]. Furthermore, this cytokine plays an important role in the induction of adaptive responses [182] by promoting antigen processing and presentation of DCs, partially by an up-regulation of MHC molecules [183]. In this respect, recombinant IFNγ has been tested as an adjunct therapy in opportunistic infections [184]. Blocking IFNγ has been found to be effective in Crohn's disease [185].

Type III IFNs can be produced by most cell types stimulated by infectious agents through TLR signalling [186], and the signalling pathways are reminiscent of the responses by type I IFNs [187]. This class of IFNs includes IFN-λ1 (IL-28A), IFN-λ2 (IL-28B) and IFN-λ3 (IL-29), cytokines structurally related to IL-10 [188].

Granulocyte/macrophage colony-stimulating factor and Granulocyte colony-stimulating factor

GM-CSF (granulocyte/macrophage colony-stimulating factor) is synthesized by multiple cell populations (macrophages, T-cells, NK cells, NKT cells, endothelial and epithelial cells, fibroblasts, etc.) in response to inflammatory stimuli. It increases the phagocytic and microbicidal activity [189] of neutrophils and macrophages and induces their production of pro-inflammatory cytokines [190]. Furthermore, GM-CSF induces the differentiation of DCs and promotes the survival of eosinophils [191]. In an experimental model, neutralizing GM-CSF suppressed LPS (lipopolysaccharide)-induced lung inflammation through NF-κB- and AP-1- (activator protein-1) dependent mechanisms [192]. The pro-inflammatory role of GM-CSF is also supported by the protective effect of an anti-(GM-CSF) antibody in a model of cigarette smoke-induced inflammation [193]. Administra-tion of GM-CSF accelerates myeloid cell and platelet recovery in patients with haematological malignancies after receiving intensive chemotherapy [194]. On the other hand, a human anti-(GM-CSF receptor-α) monoclonal antibody, mavrilimumab, is currently being tested to target mononuclear phagocytes in patients with moderate rheumatoid arthritis [195].

G-CSF (granulocyte colony-stimulating factor) is produced by macrophages and a variety of non-immune cells, such as fibroblasts, endothelial cells or bone marrow stromal cells [196]. This cytokine is critical for the proliferation and maturation of granulocytic progenitors in the bone marrow, but also seems to support effector functions and survival of mature neutrophils in peripheral blood [197]. Patients with acute lymphoblastic leukaemia after myelotoxic chemotherapy treated with G-CSF recover faster from the neutropenia, have less infectious complications and require less anti-infection medication [198]. Therapy with G-CSF to regulate the homing and engraftment of bone marrow stem cells has been tested in patients with myocardial infarction [199]. Recently, G-CSF therapy was found to be effective in chronic mucocutaneous candidiasis, possibly by inducing an IL-6-mediated IL-17 pathway [200].

Chemokines

Chemokines are low-molecular-mass proteins regulating the recruitment of inflammatory cells to the site of injury or immune response. There are approximately 50 different chemokines identified and these are grouped into one of four traditional families (CXC, CC, CX3X, and XC) on the basis of the arrangements of the two N-terminal cysteine residues [201]. In CXC and CX3C chemokines, one and three amino acids respectively separate the first and second cysteine residues, whereas, in the CC chemokines, the two cysteine residues are adjacent to each other. In XC chemokines, the first and third cysteine residues are absent. The CXC chemokines can be subdivided further into those having an ELR (glutamate/leucine/arginine) motif before the CXC motif (ELR-CXC chemokines are selective for neutrophil recruitment) and those without the ELR motif [202]. In experimental models, such as a transplant model, early chemokine expression appears to occur in two phases [203]. There is an immediate induction of the ELR-CXC chemokines attracting neutrophils, such as IL-8/CXCL8 (CXC chemokine ligand 8), MIP-2 (macrophage inflammatory protein-2)/CXCL2 and Gro-α/CXCL1, which is evident within 1–3 h following transplantation. Early CXC chemokine expression is transient, with the levels falling substantially by 24 h and returning to near-basal levels by 48 h. The next chemokines expressed subsequently [RANTES (regulated upon activation, normal T-cell expressed and secreted)/CCL5 (CC chemokine ligand 5), MCP-1 (monocyte chemoattractant protein-1)/CCL2, MIP-1/CCL3, MIG (monokine induced by IFNγ)/CXCL9, IP-10 (IFN-inducible protein of 10 kDa)/CXCL10 and I-TAC (IFN-inducible protein of 10 kDa)/CXCL11] serve to start monocyte, NK cell and T-cell recruitment. MIG/CXCL9 appears to be a key chemokine in the recruitment of allogeneic T-cells into allografts, and its neutralization may significantly prolong allograft survival [204]. This second stage of chemokine expression is at least partially dependent on the first and seems to be regulated by pro-inflammatory cytokines. It has been shown that IL-6 in complex with soluble IL-6Rs induces the transition from a neutrophil to a monocyte type of inflammation by changing the chemokine profile in endothelial and parenchymal cells [205]. In addition to the regulation of cell trafficking, several chemokines are involved in the regulation of angiogenesis [206] or deposition of cellular matrix in fibrosing disorders [207]. In addition, chemokines are intensively studied in tumour immunology since they not only regulate the recruitment of immune cells, but some of them also promote tumour progression and metastasis [208]. To date, a number of chemokine receptor inhibitors, mostly peptide inhibitors or neutralizing anti-receptor antibodies, have been tested in clinical studies targeting either CXC (CXCR1–CXCR4 and CXCR7) or CC (CCR1–CCR5 and CCR9) receptors with rather disappointing results, especially in autoimmune diseases [209]. Since two of the chemokine receptors also serve as co-receptors required for the entry of the HIV virus into cells, antagonists of CCR5 (aplaviroc, maraviroc and vicriviroc) are currently being tested in clinical trials [210], and a CXCR4 inhibitor (plerixafor) represents another possible target, which is also used for the mobilization of haematopoietic cells during high-dose chemotherapy protocols [211]. Recently, CCX282-B (vercirnon), an orally administered CCR9 antagonist regulating the migration and activation of inflammatory cells in the intestine, has shown promising preliminary results and is being tested in Phase III in patients with Crohn's disease [212].

CYTOKINES REGULATING THE INITIATION AND MODULATION OF ADAPTIVE IMMUNE RESPONSES: POLARIZATION OF Th1/Th2/Th17 PATHWAYS

A large body of evidence suggests the existence of functionally polarized Th cell responses based on their profile of cytokine secretion. Human Th1 (production of IL-2 and IFNγ), Th2 (production of IL-4, IL-5, IL-3 and IL-13) and Th17 (production of IL-17 and IL-22) cells not only produce a different set of cytokines, but also exhibit distinct functional properties and play different roles in protection [213]. Th1 lymphocytes activate macrophages and are responsible for cell-mediated immunity and phagocyte-dependent protective responses. In contrast, Th2 cells are involved in regulating antibody production, eosinophil activation and inhibition of macrophage functions. Th17 cells stimulate epithelial cells and fibroblasts to release CXCL8/IL-8, attracting neutrophils to the site of immune response. Th1 cells mainly develop following infections by intracellular bacteria and viruses, whereas Th2 cells predominate in responses to parasites and Th17 cells fight extracellular microbes [214]. Other subsets of effector Th cells, Th9 (production of IL-9) and Th22 (production of IL-22), have been described to play a role in allergic inflammation, although their physiological role in defence mechanisms has not been completely characterized yet [215]. Cytokines of innate immune cells, particularly macrophages, epithelial cells and ILCs, seem to play a critical role in the polarization of Th cytokine profiles into specific subsets of effector cells or Treg-cells (Figure 4).

Cytokine polarization of Th cell responses

Figure 4
Cytokine polarization of Th cell responses

During the adaptive immune response, Th effector cells differentiate into functional subsets characterized by specific cytokine profiles (Th1, Th2, Th17, Th9 and Th22) or into Treg-cells with suppressive capabilities. The induction of specific Th subsets is regulated almost exclusively by cytokines released from macrophages, epithelial cells or ILCs.

Figure 4
Cytokine polarization of Th cell responses

During the adaptive immune response, Th effector cells differentiate into functional subsets characterized by specific cytokine profiles (Th1, Th2, Th17, Th9 and Th22) or into Treg-cells with suppressive capabilities. The induction of specific Th subsets is regulated almost exclusively by cytokines released from macrophages, epithelial cells or ILCs.

The IL-12 family share the unique heterodimeric molecular structure composed of two covalently linked chains, and these cytokines play a critical role in the differentiation and regulation of Th cells [216].

IL-12 (p40/p35 complex) produced mainly by DCs and macrophages triggers CD4+ Th cells to differentiate into Th1 cells secreting IL-2 and IFNγ [217] and also activates NK cells and CD8+ cytotoxic T-cells [218]. Furthermore, IL-12 stimulates the antimicrobial activity of macrophages [219]. In this respect, IL-12 bridges the early innate immune mechanisms with subsequent cell-mediated adaptive immune responses regulated by Th1 lymphocytes. When rhIL-12 (recombinant human IL-12) was administered to patients with bronchial asthma, the number of blood and sputum eosinophils fell significantly, but without any significant effects on airway hyper-responsiveness or the late asthmatic reaction. Furthermore, serious adverse effects, including cardiac arrhythmias and abnormal liver function, were reported [220]. However, there are still on-going Phase I and Phase II clinical trials with rhIL-12 related to cancer, viral infections and haematopoietic stem cell transplantation [221].

IL-23 (p40/p19 complex) preferentially induces Th17 polarization and the production of IL-17, but may play a role also in induction of memory T-cells [222]. Ustekinumab, a human monoclonal antibody to the p40 subunit shared by IL-12 and IL-23, significantly improved active psoriatic arthritis in a placebo-controlled study [223]. Furthermore, blocking IL-12/IL-23 with ustekinumab holds promise as a therapy for patients with moderate-to-severe Crohn's disease unresponsive to previous anti-TNF therapy [224].

IL-27 (p28/EBi3 complex), produced by activated mononuclear phagocytes, seems to be a cytokine with predominantly immunosuppressive effects by promoting the development of Treg-cells specialized to control Th1 cell-mediated immunity [225]. In addition to further inhibitory effects on Th2 and Th17 responses, IL-27 was found to induce anti-inflammatory IL-10 production in T-cells [226].

IL-35 (p35/EBi3 complex) is the only IL-12 family member not produced by macrophages or DCs. Treg-cells release IL-35 to inhibit T-cell proliferation [227] and suppress Th17-mediated inflammation [228].

The IL-17 cytokine family consists of six members: IL-17A (the most intensively studied, referred to as IL-17), IL-17B, IL-17C, IL-17D, IL-17E (IL-25) and IL-17F. Originally, IL-17 was thought to be secreted exclusively by a Th17 subpopulation of Th cells, mostly CD4+CDD161+ cells [229], but it is also clearly produced by innate immune cells such as macrophages, DCs, NK and NKT cells [230] or the recently described ILCs [47]. IL-17 provides numerous inflammatory effects through NF-κB, MAPKs and C/EBP (CCAAT/enhancer-binding protein) signalling, leading to the induction of genes for matrix metalloproteinases, growth factors, pro-inflammatory cytokines and chemokines preferentially attracting neutrophils [231]. IL-17 is involved in host defence against bacteria and fungi and plays a role in the pathogenesis of inflammatory and autoimmune disorders [232]. Secukinumab (AIN457), a recombinant human monoclonal anti-(IL-17A) antibody, had sustained symptom reductions in psoriasis, rheumatoid arthritis and ankylosing spondylitis with no alarming safety issues [233]. There is also another anti-(IL-17) antibody ixekizumab (LY2439821) [234], anti-(IL-17RA) antibody brodalumab (AMG 827), and two small-molecule drugs, vidofludimus and tofacitinib, which inhibit IL-17 as part of their overall pharmacological profiles [235].

IL-17C released from epithelial cells stimulates inflammatory responses in an autocrine manner and up-regulates the release of pro-inflammatory cytokines, chemokines and antimicrobial peptides in response to bacterial challenge or inflammatory conditions [236]. IL-17D does not seem to directly affect immune cells, but might amplify local inflammatory reactions by the induction of IL-6, IL-8 and GM-CSF from parenchymal cells, and may also be important for growth and repair of structural damage [237]. IL-17E (IL-25) is produced by epithelial cells and plays an important role in the Th2 response in a mouse model of bronchial asthma [238]. It binds to IL-17RB and the biological effects are entirely dependent on adaptor protein CIKS (connection to IκB kinase and stress-activated protein kinase; Act-1) signalling [239]. The main targets of IL-25 are Th2 cells, NKT cells and macrophages. IL-17F up-regulates pro-inflammatory genes in vitro, and overexpression of this cytokine in lung epithelium is associated with infiltration of lymphocytes and macrophages and mucus hyperplasia [240].

IL-7, TSLP (thymic stromal lymphopoietin) and IL-15 are members of the receptor γ-chain cytokine family (together with IL-2, IL-4, IL-9 and IL-21, which are produced mostly by lymphocytes), which are critical for the development, proliferation, survival and differentiation of multiple cell lineages of both the innate and adaptive immunity [241]. IL-7, produced mainly by epithelial cells, keratinocytes and macrophages is a crucial survival factor for mature T-cells, but also regulates homoeostasis of epithelium [242].

TSLP of epithelial origin induced by allergens, viruses, helminths, diesel exhaust or cigarette smoke seems to be a critical factor in the development of Th2 responses at body/environment interfaces [243]. Bronchial epithelial cells from asthmatic patients have a higher capacity to release TSLP in response to dsRNA, which might explain the Th2 polarization of immune reactivity in viral infections of these patients [244]. In a murine model of allergic asthma induced by chronic exposure to the house dust mite, neutralization of TSLP inhibits airway remodelling [245].

IL-15 is a pleiotropic cytokine with widespread mRNA expression in most tissues, which is produced mainly by macrophages, DC, and epithelial cells. IL-15 is critical for the development of NK and NKT cells, pro-inflammatory cytokine and chemokine release from monocytes, differentiation of DC, activation of neutrophils, migration of mast cells, survival of CD8+ cytotoxic T-cells and induction of the co-stimulatory molecule CD154 [CD40L (CD40 ligand)] on CD4+ Th cells [246].

CYTOKINES FOR THE INHIBITION OF IMMUNE RESPONSES AND REGULATION OF REPARATIVE PROCESSES

Much progress has been made in recent years in defining the cellular and molecular mechanisms by which the immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue. Under normal circumstances, cytokines released mainly from macrophages, preferentially the M2 subset, have a capacity to inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulation of extracellular matrix protein deposition and angiogenesis. Understanding these events is also of particular importance in numerous immunopathological conditions associated with inappropriate tissue damage or an exaggerated fibrotic response associated with chronic inflammation. In some diseases, such as idiopathic pulmonary fibrosis [247] or rheumatoid arthritis [248], genetic factors, including cytokine gene polymorphisms, might play an important role. Most of the cytokines regulating reparative processes are released from innate immune cells, which also potentiate the immunosuppressive activity of Treg-cells (Figure 5).

Inhibition of immune responses and reparation

Figure 5
Inhibition of immune responses and reparation

Innate immune cells release a number of cytokines with a capacity to inhibit functions of effector cells, suppress inflammation and restore the tissue damaged during the immune response. In addition to the induction of fibroproliferation and angiogenesis, TGFβ and also IL-10 are cytokines activating Treg-cells, which further down-regulate adaptive immune responses.

Figure 5
Inhibition of immune responses and reparation

Innate immune cells release a number of cytokines with a capacity to inhibit functions of effector cells, suppress inflammation and restore the tissue damaged during the immune response. In addition to the induction of fibroproliferation and angiogenesis, TGFβ and also IL-10 are cytokines activating Treg-cells, which further down-regulate adaptive immune responses.

Interleukins

The IL-10 family consists of nine cytokines structurally related to IFNs, which can be subdivided into three functionally distinct groups: (i) the anti-inflammatory cytokine IL-10 itself, (ii) the IL-20 subfamily with direct antibacterial effects (IL-19, IL-20, IL-22, IL-24 and IL-26), and (iii) type III IFNs with antiviral activities (IL-28A, IL-28B and IL-29). Most of the IL-10 family members are produced preferentially by myeloid cells or lymphocytes, but may also be secreted by non-immune cells such as epithelial cells, keratinocytes and fibroblasts.

The structure of IL-10 is quite similar to IFNγ [249], but the effects of these two cytokines are completely different. In contrast with the strong pro-inflammatory effects of IFNγ, IL-10 is probably the most important anti-inflammatory cytokine used for limiting the overwhelming immune reactions leading to tissue injury. Mononuclear phagocytes and lymphocytes (not only Th2 and Treg-cells, but also Th1, Th17, Th22 and B-cells) represent the main source of IL-10, but limited amounts of this cytokine might also be produced by granulocytes, NK cells or keratinocytes [250]. IL-10 inhibits the production of pro-inflammatory cytokines and chemokines and reduces the antigen-presenting capacity of DCs by down-regulating MHC class II molecules [251]. On the other hand, IL-10 may also play a pro-inflammatory function in antibody-mediated immunopathologies by contributing to B-cell activation [252]. In patients with rheumatoid arthritis, recombinant human IL-10, SCH52000 [253], did not have any significant clinical effects in a placebo-controlled study [254].

IL-19 is produced by macrophages, epithelial cells, B-cells and keratinocytes and appears to be critical in controlling the release of pro-inflammatory cytokines in different clinical settings related to both Th1 and Th2 responses. Induction of IL-19 transcription depends on MyD88-dependent TLR signalling and might be crucial for endotoxin tolerance to prevent lethality from septic shock [255]. Although an anti-inflammatory function of IL-19 has been suggested in IBD or coronary procedures, data also support a potential pro-inflammatory role in rheumatoid arthritis [256] or a proliferative effect in epithelial remodelling [257].

Mononuclear phagocytes and keratinocytes are the main source of IL-20, and the cytokine is up-regulated in psoriatic arthritis [258], as well as in the plasma of patients with rheumatoid arthritis [259]. Biological functions of IL-20 include a role in wound healing and remodelling, together with the induction of pro-inflammatory chemokines and cytokines [260].

In innate immunity, IL-22 is produced by subsets of ILCs (ILC22; NK-22) and not by mononuclear phagocytes [47]. Among T-cells, IL-22 is produced not only by Th22 cells, but may also be released from Th0 and Th17 cells [261]. IL-22 is a cytokine important for antibacterial defence by inducing defensins, calgranulins and other antibacterial peptides in keratinocytes, which are probably a major target for this cytokine, although elevated levels of IL-22 have also been found in patients with IBD [262]. With respect to experimental data, IL-22 appears to play a beneficial role in inflammation by counteracting the destructive effects of immune mechanisms and supporting wound healing [263]. Previous findings suggest that IL-22 produced by ILCs regulates the containment of commensal bacteria in the gut [264]. IL-24 produced by activated monocytes and Th2 cells [265] is involved in wound repair processes by down-regulating keratinocyte migration and proliferation [266], and has been reported to induce the death of malignant cells [267]. IL-26 can be produced by monocytes, Th17 cells [268] and NK-22 cells [269] and may play a role in modulation of epithelial homoeostasis and integrity, although its physiological role has not been sufficiently elucidated yet.

Growth factors

All five isoforms of TGFβ (β1, β2, β3, β4 and β5) inhibit the proliferation of most cell types, but simultaneously stimulate the proliferation of some mesenchymal cells, e.g. fibroblasts, and induce their production of extracellular matrix proteins (fibronectin, collagens, tenascins, proteoglycans and glycosamidoglycans) and mediate epithelial-to-mesenchymal transition [270]. Furthermore, direct anti-proliferative effects on T-lymphocytes, B-lymphocytes and NK cells result in the immunosuppressive properties of this cytokine, together with inhibition of macrophage activation [271]. The activity of TGFβ requires processing from a latent molecule [272], and the effect is dependent on the cell differentiation state [273]. TGFβ1 is widely expressed and most intensively studied compared with other isoforms. The multifunctional nature of TGFβ [274] suggests an important role in wound healing, down-regulation of immune responses and modulation of cell growth and differentiation being critical in the development of regulatory T-cells [275], but it also plays an important role in the immunopathogenesis of fibrosing disorders [276]. In addition to high levels of TGFβ produced by platelets, macrophages, lymphocytes, endothelial cells and epithelial cells, eosinophils represent other cellular sources of the cytokine [277]. TGFβ activation is also regulated by its binding to integrins [278]. Fresolimumab, a human anti-TGFβ antibody, has been tested in primary focal segmental glomerulosclerosis [279] and there are also on-going studies in cancer patients [280].

The activin/inhibin family and BMP (bone morphogenetic proteins) are other cytokines structurally related to TGFβ and are involved in tissue reparation and remodelling, but might also play a role in differentiation of T-lymphocytes [281]. Activin A can also be classified as a pro-inflammatory cytokine by induction of macrophage polarization towards the acquisition of an M1 phenotype [282].

FGFs (fibroblast growth factors) are a family of 23 proteins which play an important role in reparative processes by induction of wound healing by promoting fibroblast proliferation and angiogenesis. FGF1 (acidic FGF) and FGF2 (basic FGF) appears to be the most potent in this respect, whereas FGF7 and FGF10 (also known as keratinocyte growth factors) regulate the proliferation and differentiation of epithelial cells. In addition to these effects, FGFs also play a role in the regulation and differentiation of multiple cells and tissues during embryogenesis [283]. Elevated levels of FGF23 are associated with increased cardiovascular mortality in patients with chronic kidney diseases [284].

PDGF (platelet-derived growth factor), produced not only by platelets but macrophages, represents another important local source of this cytokine. In addition to its role in reparative processes by induction of proliferative response in fibroblasts and muscle cells, PDGF serves as a chemotactic factor for monocytes, neutrophils, and fibroblasts and is involved in the pathogenesis of fibrotic diseases [285].

HGF (hepatocyte growth factor) is ubiquitously expressed in a variety of cell types (most abundant in the liver and placenta) and plays a significant role in tissue regeneration by inducing cell proliferation and migration [286]. On the other hand, angiogenic activity of HGF may also contribute to the neovascularization of tumours [287].

VEGF (vascular endothelial growth factor) is an important inducer of angiogenesis produced by a number of innate immune cells including mast cells [288]. In addition to its physiological role in the development of blood vessels, VEGF also regulates angiogenesis of vessels in tumours and might directly stimulate the growth of cancer cells through an autocrine mechanisms [289]. Targeting VEGF using the monoclonal antibody bevacimumab, an anti-VEGF receptor antibody ramucirumab, or a recombinant fusion protein aflibercept is currently being tested in cancer patients [290], where, for several years, the field has been very active with molecules blocking EGFRs (epidermal growth factor receptors) with monoclonal antibodies [291] or tyrosine kinase inhibitors [292].

CONCLUDING REMARKS

Cytokines released from innate immune cells are involved in the precise regulation of all phases of the immune response and, under physiological conditions, provide important signals for the turnover of multiple cell populations. With respect to the role of pro-inflammatory cytokines released from macrophages in the pathogenesis of chronic diseases, blocking substances based on monoclonal antibodies or recombinant proteins are currently being tested in clinical studies to target cell–cell interactions in chronic inflammatory diseases, and inhibitors of angiogenic cytokines represent attractive targets in malignancies. A better understanding of cytokine networking between innate and adaptive immune cells is essential to increase the effectiveness of biological therapy, reduce the risk of associated adverse effects and, furthermore, might be helpful in finding new potential targets.

Abbreviations

     
  • APRIL

    a proliferation-inducing ligand

  •  
  • BAFF

    B-cell-activating factor belonging to the TNF family

  •  
  • CCL

    CC chemokine ligand

  •  
  • CCR

    CC chemokine receptor

  •  
  • CXCL

    CXC chemokine ligand

  •  
  • CXCR

    CXC chemokine receptor

  •  
  • DC

    dendritic cell

  •  
  • ELR motif

    glutamate/leucine/arginine motif

  •  
  • FGF

    fibroblast growth factor

  •  
  • G-CSF

    granulocyte colony-stimulating factor

  •  
  • GM-CSF

    granulocyte/macrophage colony-stimulating factor

  •  
  • HGF

    hepatocyte growth factor

  •  
  • HMGB

    high-mobility group box

  •  
  • IBD

    inflammatory bowel disease

  •  
  • IFN

    interferon

  •  
  • IL

    interleukin

  •  
  • IL-18BP

    IL-18-binding protein

  •  
  • IL-1R etc.

    IL-1 receptor etc

  •  
  • IL-1Ra etc.

    IL-1R antagonist etc

  •  
  • ILC

    innate lymphoid cell

  •  
  • LPS

    lipopolysaccharide

  •  
  • MAPK

    mitogen-activated protein kinase

  •  
  • MIG

    monokine induced by IFNγ

  •  
  • MIP

    macrophage inflammatory protein

  •  
  • MyD88

    myeloid differentiation factor 88

  •  
  • NF-κB

    nuclear factor κB

  •  
  • NK

    natural killer

  •  
  • NKT cell

    natural killer T-cell

  •  
  • PDGF

    platelet-derived growth factor

  •  
  • PRR

    pattern recognition receptor

  •  
  • RANKL

    receptor activator of NF-κB ligand

  •  
  • rhIL-12

    recombinant human IL-12

  •  
  • TCR

    T-cell receptor

  •  
  • TGF

    transforming growth factor

  •  
  • TLR

    Toll-like receptor

  •  
  • TNF

    tumour necrosis factor

  •  
  • TRAIL

    TNF-related apoptosis-inducing ligand

  •  
  • Treg-cell

    regulatory T-cell

  •  
  • TSLP

    thymic stromal lymphopoietin

  •  
  • TWEAK

    TNF-like weak inducer of apoptosis

  •  
  • VEGF

    vascular endothelial growth factor

FUNDING

Our work is supported by MH CZ–DRO (Institute for Clinical and Experimental Medicine–IKEM) [grant number IN 00023001].

References

References
1
Bulek
K.
Swaidani
S.
Aronica
M.
Li
X.
Epithelium: the interplay between innate and Th2 immunity
Immunol. Cell Biol.
2010
, vol. 
88
 (pg. 
257
-
268
)
2
Lambrecht
B. N.
Hammad
H.
The airway epithelium in asthma
Nat. Med.
2012
, vol. 
18
 (pg. 
684
-
692
)
3
Szabady
R. L.
McCormick
B. A.
Control of neutrophil inflammation at mucosal surfaces by secreted epithelial products
Front. Immunol.
2013
, vol. 
4
 pg. 
220
 
4
Thorburn
E.
Kolesar
L.
Brabcova
E.
Petrickova
K.
Petricek
M.
Jaresova
M.
Slavcev
A.
Striz
I.
CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines
APMIS
2009
, vol. 
117
 (pg. 
477
-
487
)
5
Striz
I.
Slavcev
A.
Kalanin
J.
Jaresova
M.
Rennard
S. I.
Cell-cell contacts with epithelial cells modulate the phenotype of human macrophages
Inflammation
2001
, vol. 
25
 (pg. 
241
-
246
)
6
Wilkinson
R.
Wang
X.
Roper
K. E.
Healy
H.
Activated human renal tubular cells inhibit autologous immune responses
Nephrol. Dial. Transplant.
2011
, vol. 
26
 (pg. 
1483
-
1492
)
7
Vitalone
M. J.
Naesens
M.
Sigdel
T.
Li
L.
Hseih
S.
Sarwal
M. M.
The dual role of epithelial-to-mesenchymal transition in chronic allograft injury in pediatric renal transplantation
Transplantation
2011
, vol. 
92
 (pg. 
787
-
795
)
8
Danese
S.
Nonimmune cells in inflammatory bowel disease: from victim to villain
Trends Immunol.
2008
, vol. 
29
 (pg. 
555
-
564
)
9
Holgate
S. T.
Arshad
H. S.
Roberts
G. C.
Howarth
P. H.
Thurner
P.
Davies
D. E.
A new look at the pathogenesis of asthma
Clin. Sci.
2009
, vol. 
118
 (pg. 
439
-
450
)
10
Nguan
C. Y.
Du
C.
Renal tubular epithelial cells as immunoregulatory cells in renal allograft rejection
Transplant. Rev.
2009
, vol. 
23
 (pg. 
129
-
138
)
11
Ziegler-Heitbrock
H. W.
Strobel
M.
Fingerle
G.
Schlunck
T.
Pforte
A.
Blumenstein
M.
Haas
J. G.
Small (CD14+/CD16+) monocytes and regular monocytes in human blood
Pathobiology
1991
, vol. 
59
 (pg. 
127
-
130
)
12
Ancuta
P.
Weiss
L.
Haeffner-Cavaillon
N.
CD14+CD16+ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics
Eur. J. Immunol.
2000
, vol. 
30
 (pg. 
1872
-
1883
)
13
Merino
A.
Buendia
P.
Martin-Malo
A.
Aljama
P.
Ramirez
R.
Carracedo
J.
Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity
J. Immunol.
2011
, vol. 
186
 (pg. 
1809
-
1815
)
14
Belge
K. U.
Dayyani
F.
Horelt
A.
Siedlar
M.
Frankenberger
M.
Frankenberger
B.
Espevik
T.
Ziegler-Heitbrock
L.
The proinflammatory CD14+CD16+DR+ monocytes are a major source of TNF
J. Immunol.
2002
, vol. 
168
 (pg. 
3536
-
3542
)
15
Li
J.
Pritchard
D. K.
Wang
X.
Park
D. R.
Bumgarner
R. E.
Schwartz
S. M.
Liles
W. C.
cDNA microarray analysis reveals fundamental differences in the expression profiles of primary human monocytes, monocyte-derived macrophages, and alveolar macrophages
J. Leukoc. Biol.
2007
, vol. 
81
 (pg. 
328
-
335
)
16
Devaraj
S.
Jialal
I.
C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype
Arterioscler. Thromb. Vasc. Biol.
2011
, vol. 
31
 (pg. 
1397
-
1402
)
17
Ziegler-Heitbrock
L.
Ancuta
P.
Crowe
S.
Dalod
M.
Grau
V.
Hart
D. N.
Leenen
P. J. M.
Liu
Y. J.
MacPherson
G.
Randolph
G. J.
, et al. 
Nomenclature of monocytes and dendritic cells in blood
Blood
2010
, vol. 
116
 (pg. 
E74
-
E80
)
18
Reschner
A.
Hubert
P.
Delvenne
P.
Boniver
J.
Jacobs
N.
Innate lymphocyte and dendritic cell crosstalk: a key factor in the regulation of the immune response
Clin. Exp. Immunol.
2008
, vol. 
152
 (pg. 
219
-
226
)
19
Aumeunier
A.
Scott
C. L.
Bain
C. C.
Mowat
A. M. I.
Small intestinal CD103+ DC are a heterogeneous population with distinct functions
Immunology
2011
, vol. 
135
 (pg. 
75
-
75
)
20
Borregaard
N.
Sorensen
O. E.
Theilgaard-Wnchl
K.
Neutrophil granules: a library of innate immunity proteins
Trends Immunol
2007
, vol. 
28
 (pg. 
340
-
345
)
21
Brinkmann
V.
Reichard
U.
Goosmann
C.
Fauler
B.
Uhlemann
Y.
Weiss
D. S.
Weinrauch
Y.
Zychlinsky
A.
Neutrophil extracellular traps kill bacteria
Science
2004
, vol. 
303
 (pg. 
1532
-
1535
)
22
Kovach
M. A.
Standiford
T. J.
The function of neutrophils in sepsis
Curr. Opin. Infect. Dis.
2012
, vol. 
25
 (pg. 
321
-
327
)
23
Schroder
A. K.
von der Ohe
M.
Kolling
U.
Altstaedt
J.
Uciechowski
P.
Fleischer
D.
Dalhoff
K.
Ju
X.
Zenke
M.
Heussen
N.
Rink
L.
Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators
Immunology
2006
, vol. 
119
 (pg. 
317
-
327
)
24
Li
L.
Huang
L.
Vergis
A. L.
Ye
H.
Bajwa
A.
Narayan
V.
Strieter
R. M.
Rosin
D. L.
Okusa
M. D.
IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury
J. Clin. Invest.
2010
, vol. 
120
 (pg. 
331
-
342
)
25
Gebreselassie
N. G.
Moorhead
A. R.
Fabre
V.
Gagliardo
L. F.
Lee
N. A.
Lee
J. J.
Appleton
J. A.
Eosinophils preserve parasitic nematode larvae by regulating local immunity
J. Immunol.
2012
, vol. 
188
 (pg. 
417
-
425
)
26
Holgate
S. T.
Pathogenesis of asthma
Clin. Exp. Allergy
2008
, vol. 
38
 (pg. 
872
-
897
)
27
Zagai
U.
Lundahl
J.
Klominek
J.
Venge
P.
Skold
C. M.
Eosinophil cationic protein stimulates migration of human lung fibroblasts in vitro
Scand. J. Immunol.
2009
, vol. 
69
 (pg. 
381
-
386
)
28
Oyoshi
M. K.
He
R.
Kanaoka
Y.
ElKhal
A.
Kawamoto
S.
Lewis
C. N.
Austen
K. F.
Geha
R. S.
Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis
Proc. Natl. Acad. Sci. U.S.A.
2012
, vol. 
109
 (pg. 
4992
-
4997
)
29
Ogbogu
P. U.
Rosing
D. R.
Horne
M. K.
III
Cardiovascular manifestations of hypereosinophilic syndromes
Immunol. Allergy Clin. North. Am.
2007
, vol. 
27
 (pg. 
457
-
475
)
30
Pasha
S. F.
Sharma
V. K.
Crowell
M. D.
Current concepts and treatment options in eosinophilic esophagitis
Curr. Opin. Investig. Drugs
2006
, vol. 
7
 (pg. 
992
-
996
)
31
Cho
S. H.
Seo
J. Y.
Choi
D. C.
Yoon
H. J.
Cho
Y. J.
Min
K. U.
Lee
G. K.
Seo
J. W.
Kim
Y. Y.
Pathological changes according to the severity of asthma
Clin. Exp. Allergy
1996
, vol. 
26
 (pg. 
1210
-
1219
)
32
Moosbauer
C.
Morgenstern
E.
Cuvelier
S. L.
Manukyan
D.
Bidzhekov
K.
Albrecht
S.
Lohse
P.
Patel
K. D.
Engelmann
B.
Eosinophils are a major intravascular location for tissue factor storage and exposure
Blood
2007
, vol. 
109
 (pg. 
995
-
1002
)
33
Florian
S.
Sonneck
K.
Czerny
M.
Hennersdorf
F.
Hauswirth
A. W.
Buhring
H. J.
Valent
P.
Detection of novel leukocyte differentiation antigens on basophils and mast cells by HLDA8 antibodies
Allergy
2006
, vol. 
61
 (pg. 
1054
-
1062
)
34
Arinobu
Y.
Iwasaki
H.
Gurish
M. F.
Mizuno
S.
Shigematsu
H.
Ozawa
H.
Tenen
D. G.
Austen
K. F.
Akashi
K.
Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis
Proc. Natl. Acad. Sci. U.S.A.
2005
, vol. 
102
 (pg. 
18105
-
18110
)
35
Karasuyama
H.
Obata
K.
Wada
T.
Tsujimura
Y.
Mukai
K.
Newly appreciated roles for basophils in allergy and protective immunity
Allergy
2011
, vol. 
66
 (pg. 
1133
-
1141
)
36
Shin
K.
Nigrovic
P. A.
Crish
J.
Boilard
E.
McNeil
H. P.
Larabee
K. S.
Adachi
R.
Gurish
M. F.
Gobezie
R.
Stevens
R. L.
Lee
D. M.
Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes
J. Immunol.
2009
, vol. 
182
 (pg. 
647
-
656
)
37
Groot Kormelink
T.
Abudukelimu
A.
Redegeld
F. A.
Mast cells as target in cancer therapy
Curr. Pharm. Des.
2009
, vol. 
15
 (pg. 
1868
-
1878
)
38
de Vries
V. C.
Elgueta
R.
Lee
D. M.
Noelle
R. J.
Mast cell protease 6 is required for allograft tolerance
Transplant. Proc.
2010
, vol. 
42
 (pg. 
2759
-
2762
)
39
Ito
Y.
Satoh
T.
Takayama
K.
Miyagishi
C.
Walls
A. F.
Yokozeki
H.
Basophil recruitment and activation in inflammatory skin diseases
Allergy
2011
, vol. 
66
 (pg. 
1107
-
1113
)
40
Brodin
P.
Lakshmikanth
T.
Karre
K.
Hoglund
P.
Skewing of the NK cell repertoire by MHC class I via quantitatively controlled enrichment and contraction of specific Ly49 subsets
J. Immunol.
2012
, vol. 
188
 (pg. 
2218
-
2226
)
41
Sun
J. C.
Lopez-Verges
S.
Kim
C. C.
DeRisi
J. L.
Lanier
L. L.
NK cells and immune “memory”
J. Immunol.
2011
, vol. 
186
 (pg. 
1891
-
1897
)
42
Arrenberg
P.
Halder
R.
Dai
Y.
Maricic
I.
Kumar
V.
Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a β-linked self-glycolipid
Proc Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
10984
-
10989
)
43
Moro
K.
Yamada
T.
Tanabe
M.
Takeuchi
T.
Ikawa
T.
Kawamoto
H.
Furusawa
J.
Ohtani
M.
Fujii
H.
Koyasu
S.
Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells
Nature
2010
, vol. 
463
 (pg. 
540
-
544
)
44
Neill
D. R.
Wong
S. H.
Bellosi
A.
Flynn
R. J.
Daly
M.
Langford
T. K.
Bucks
C.
Kane
C. M.
Fallon
P. G.
Pannell
R.
, et al. 
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
Nature
2010
, vol. 
464
 (pg. 
1367
-
1370
)
45
Price
A. E.
Liang
H. E.
Sullivan
B. M.
Reinhardt
R. L.
Eisley
C. J.
Erle
D. J.
Locksley
R. M.
Systemically dispersed innate IL-13-expressing cells in type 2 immunity
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
11489
-
11494
)
46
Saenz
S. A.
Siracusa
M. C.
Perrigoue
J. G.
Spencer
S. P.
Urban
J. F.
Jr
Tocker
J. E.
Budelsky
A. L.
Kleinschek
M. A.
Kastelein
R. A.
Kambayashi
T.
, et al. 
IL-25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses
Nature
2010
, vol. 
464
 (pg. 
1362
-
1366
)
47
Spits
H.
Di Santo
J. P.
The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling
Nat. Immunol.
2011
, vol. 
12
 (pg. 
21
-
27
)
48
Yang
D.
de la Rosa
G.
Tewary
P.
Oppenheim
J. J.
Alarmins link neutrophils and dendritic cells
Trends Immunol.
2009
, vol. 
30
 (pg. 
531
-
537
)
49
Yano
J.
Noverr
M. C.
Fidel
P. L.
Jr
Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins
Cytokine
2012
, vol. 
58
 (pg. 
118
-
128
)
50
Semple
F.
Dorin
J. R.
β-defensins: multifunctional modulators of infection, inflammation and more?
J. Innate Immun.
2012
, vol. 
4
 (pg. 
337
-
348
)
51
Shirin
T.
Rahman
A.
Danielsson
A.
Uddin
T.
Bhuyian
T. R.
Sheikh
A.
Qadri
S. S.
Qadri
F.
Hammarstrom
M. L.
Antimicrobial peptides in the duodenum at the acute and convalescent stages in patients with diarrhea due to Vibrio cholerae O1 or enterotoxigenic Escherichia coli infection
Microbes Infect.
2011
, vol. 
13
 (pg. 
1111
-
1120
)
52
Pennings
J. L.
Schuurhof
A.
Hodemaekers
H. M.
Buisman
A.
de Rond
L. C.
Widjojoatmodjo
M. N.
Luytjes
W.
Kimpen
J. L.
Bont
L.
Janssen
R.
Systemic signature of the lung response to respiratory syncytial virus infection
PLoS ONE
2011
, vol. 
6
 pg. 
e21461
 
53
Yanai
H.
Chiba
S.
Ban
T.
Nakaima
Y.
Onoe
T.
Honda
K.
Ohdan
H.
Taniguchi
T.
Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs)
Proc. Natl. Acad. Sci. U.S.A.
2011
, vol. 
108
 (pg. 
11542
-
11547
)
54
Stenger
S.
Hanson
D. A.
Teitelbaum
R.
Dewan
P.
Niazi
K. R.
Froelich
C. J.
Ganz
T.
Thoma-Uszynski
S.
Melian
A.
Bogdan
C.
, et al. 
An antimicrobial activity of cytolytic T cells mediated by granulysin
Science
1998
, vol. 
282
 (pg. 
121
-
125
)
55
Curran
C. S.
Bertics
P. J.
Lactoferrin regulates an axis involving CD11b and CD49d integrins and the chemokines MIP-1α and MCP-1 in GM-CSF-treated human primary eosinophils
J. Interferon Cytokine Res.
2012
, vol. 
30
 (pg. 
450
-
461
)
56
Srikrishna
G.
Freeze
H. H.
Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer
Neoplasia
2009
, vol. 
11
 (pg. 
615
-
628
)
57
Gougeon
M. L.
Melki
M. T.
Saidi
H.
HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells
Cell Death Diff.
2012
, vol. 
19
 (pg. 
96
-
106
)
58
Aggarwal
B. B.
Gupta
S. C.
Kim
J. H.
Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey
Blood
2012
, vol. 
119
 (pg. 
651
-
665
)
59
Zheng
L.
Teschler
H.
Guzman
J.
Hubner
K.
Striz
I.
Costabel
U.
Alveolar macrophage TNF-α release and BAL cell phenotypes in sarcoidosis
Am. J. Respir. Crit. Care Med.
1995
, vol. 
152
 (pg. 
1061
-
1066
)
60
Park
H.
Park
S. G.
Kim
J.
Ko
Y. G.
Kim
S.
Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43
Cytokine
2002
, vol. 
20
 (pg. 
148
-
153
)
61
Tracey
K. J.
Lowry
S. F.
Cerami
A.
Cachectin: a hormone that triggers acute shock and chronic cachexia
J. Infect. Dis.
1988
, vol. 
157
 (pg. 
413
-
420
)
62
Leon
L. R.
White
A. A.
Kluger
M. J.
Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice
Am. J. Physiol.
1998
, vol. 
275
 (pg. 
R269
-
R277
)
63
Plomgaard
P.
Fischer
C. P.
Ibfelt
T.
Pedersen
B. K.
van Hall
G.
Tumor necrosis factor-α modulates human in vivo lipolysis
J. Clin. Endocrinol. Metab.
2008
, vol. 
93
 (pg. 
543
-
549
)
64
Patel
J. N.
Jager
A.
Schalkwijk
C.
Corder
R.
Douthwaite
J. A.
Yudkin
J. S.
Coppack
S. W.
Stehouwer
C. D.
Effects of tumour necrosis factor-α in the human forearm: blood flow and endothelin-1 release
Clin. Sci.
2002
, vol. 
103
 (pg. 
409
-
415
)
65
Nawroth
P. P.
Stern
D. M.
Modulation of endothelial cell hemostatic properties by tumor necrosis factor
J. Exp. Med.
1986
, vol. 
163
 (pg. 
740
-
745
)
66
Ijzerman
R. G.
Voordouw
J. J.
Van Weissenbruch
M. M.
Yudkin
J. S.
Serne
E. H.
Delemarre-van de Waal
H. A.
Stehouwer
C. D.
TNF-α levels are associated with skin capillary recruitment in humans: a potential explanation for the relationship between TNF-α and insulin resistance
Clin. Sci.
2006
, vol. 
110
 (pg. 
361
-
368
)
67
Smolen
J. S.
Aletaha
D.
Redlich
K.
The pathogenesis of rheumatoid arthritis: new insights from old clinical data?
Nat. Rev. Rheumatol.
2012
, vol. 
8
 (pg. 
235
-
243
)
68
Hansen
R.
Thomson
J. M.
El-Omar
E. M.
Hold
G. L.
The role of infection in the aetiology of inflammatory bowel disease
J. Gastroenterol.
2010
, vol. 
45
 (pg. 
266
-
276
)
69
Guilloteau
K.
Paris
I.
Pedretti
N.
Boniface
K.
Juchaux
F.
Huguier
V.
Guillet
G.
Bernard
F. X.
Lecron
J. C.
Morel
F.
Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1 α, and TNF-α recapitulates some features of psoriasis
J. Immunol.
2010
, vol. 
184
 (pg. 
5263
-
5270
)
70
de Godoy
I.
Donahoe
M.
Calhoun
W. J.
Mancino
J.
Rogers
R. M.
Elevated TNF-α production by peripheral blood monocytes of weight-losing COPD patients
Am. J. Respir. Crit. Care Med.
1996
, vol. 
153
 (pg. 
633
-
637
)
71
Roman
J.
Fernandez
F.
Velasco
F.
Rojas
R.
Roldan
M. R.
Torres
A.
Serum TNF levels in neonatal sepsis and septic shock
Acta Paediatr.
1993
, vol. 
82
 (pg. 
352
-
354
)
72
Osterman
M. T.
Haynes
K.
Delzell
E.
Zhang
J.
Bewtra
M.
Brensinger
C.
Chen
L.
Xie
F.
Curtis
J. R.
Lewis
J. D.
Comparative effectiveness of infliximab and adalimumab for Crohn's disease
Clin. Gastroenterol. Hepatol.
2013
 
doi:10.1016/j.cgh.2013.06.010
73
Danese
S.
IBD: Golimumab in ulcerative colitis: a ‘menage a trois’ of drugs
Nat. Rev. Gastroenterol. Hepatol.
2013
, vol. 
10
 (pg. 
511
-
512
)
74
Ramirez-Herraiz
E.
Escudero-Vilaplana
V.
Alanon-Plaza
E.
Trovato-Lopez
N.
Herranz-Alonso
A.
Morell-Baladron
A.
Sanjurjo-Saez
M.
Efficiency of adalimumab, etanercept and infliximab in rheumatoid arthritis patients: dosing patterns and effectiveness in daily clinical practice
Clin. Exp. Rheumatol.
2013
, vol. 
31
 (pg. 
559
-
565
)
75
Rajanayagam
J.
Lewindon
P. J.
Infliximab as rescue therapy in paediatric autoimmune hepatitis
J. Hepatol.
2013
, vol. 
59
 (pg. 
908
-
909
)
76
Chen
D.
Wang
X. B.
Zhou
Y.
Zhu
X. C.
Efficacy of infliximab in the treatment for dermatomyositis with acute interstitial pneumonia: a study of fourteen cases and literature review
Rheumatol. Int.
2013
, vol. 
33
 (pg. 
2455
-
2458
)
77
Deeks
E. D.
Certolizumab pegol: a review of its use in the management of rheumatoid arthritis
Drugs
2013
, vol. 
73
 (pg. 
75
-
97
)
78
Hamed
H. A.
Yamaguchi
Y.
Fisher
P. B.
Grant
S.
Dent
P.
Sorafenib and HDAC inhibitors synergize with TRAIL to kill tumor cells
J. Cell. Physiol.
2013
, vol. 
228
 (pg. 
1996
-
2005
)
79
Dimberg
L. Y.
Anderson
C. K.
Camidge
R.
Behbakht
K.
Thorburn
A.
Ford
H. L.
On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics
Oncogene
2013
, vol. 
32
 (pg. 
1341
-
1350
)
80
Moriishi
T.
Fukuyama
R.
Ito
M.
Miyazaki
T.
Maeno
T.
Kawai
Y.
Komori
H.
Komori
T.
Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading
PLoS ONE
2012
, vol. 
7
 pg. 
e40143
 
81
Izawa
T.
Ishimaru
N.
Moriyama
K.
Kohashi
M.
Arakaki
R.
Hayashi
Y.
Crosstalk between RANKL and Fas signaling in dendritic cells controls immune tolerance
Blood
2007
, vol. 
110
 (pg. 
242
-
250
)
82
Epstein
M. S.
Ephros
H. D.
Epstein
J. B.
Review of current literature and implications of RANKL inhibitors for oral health care providers
Oral Surg. Oral Med. Oral. Path Oral Rad.
2012
, vol. 
116
 (pg. 
e434
-
e442
)
83
Chicheportiche
Y.
Bourdon
P. R.
Xu
H.
Hsu
Y. M.
Scott
H.
Hession
C.
Garcia
I.
Browning
J. L.
TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis
J. Biol. Chem.
1997
, vol. 
272
 (pg. 
32401
-
32410
)
84
Chen
T.
Guo
Z. P.
Li
L.
Li
M. M.
Wang
T. T.
Jia
R. Z.
Cao
N.
Li
J. Y.
TWEAK enhances E-selectin and ICAM-1 expression, and may contribute to the development of cutaneous vasculitis
PLoS ONE
2013
, vol. 
8
 pg. 
e56830
 
85
Ucero
A. C.
Benito-Martin
A.
Fuentes-Calvo
I.
Santamaria
B.
Blanco
J.
Lopez-Novoa
J. M.
Ruiz-Ortega
M.
Egido
J.
Burkly
L. C.
Martinez-Salgado
C.
Ortiz
A.
TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast
Biochim. Biophys. Acta
2013
, vol. 
1832
 (pg. 
1744
-
1755
)
86
Park
J. S.
Park
M. K.
Lee
S. Y.
Oh
H. J.
Lim
M. A.
Cho
W. T.
Kim
E. K.
Ju
J. H.
Park
Y. W.
Park
S. H.
, et al. 
TWEAK promotes the production of interleukin-17 in rheumatoid arthritis
Cytokine
2012
, vol. 
60
 (pg. 
143
-
149
)
87
Michaelson
J. S.
Wisniacki
N.
Burkly
L. C.
Putterman
C.
Role of TWEAK in lupus nephritis: a bench-to-bedside review
J. Autoimmun.
2012
, vol. 
39
 (pg. 
130
-
142
)
88
Mackay
F.
Ambrose
C.
The TNF family members BAFF and APRIL: the growing complexity
Cytokine Growth Factor Rev.
2003
, vol. 
14
 (pg. 
311
-
324
)
89
Xiao
Y.
Motomura
S.
Deyev
V.
Podack
E. R.
TNF superfamily member 13, APRIL, inhibits allergic lung inflammation
Eur. J. Immunol.
2011
, vol. 
41
 (pg. 
164
-
171
)
90
Fernandez
L.
Salinas
G. F.
Rocha
C.
Carvalho-Pinto
C. E.
Yeremenko
N.
Papon
L.
Medema
J. P.
Combe
B.
Morel
J.
Baeten
D.
Hahne
M.
The TNF family member APRIL dampens collagen-induced arthritis
Ann. Rheum. Dis.
2013
, vol. 
72
 (pg. 
1367
-
1374
)
91
Gao
Q.
Li
Q.
Xue
Z.
Wu
P.
Yang
X.
In vitro and in vivo evaluation of a humanized anti-APRIL antibody
Curr. Mol. Med.
2013
, vol. 
13
 (pg. 
464
-
465
)
92
t Hart
B. A.
Jagessar
S. A.
Haanstra
K.
Verschoor
E.
Laman
J. D.
Kap
Y. S.
The Primate EAE model points at EBV-infected B Cells as a preferential therapy target in multiple sclerosis
Front. Immunol.
2013
, vol. 
4
 pg. 
145
 
93
MacLennan
I.
Vinuesa
C.
Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses
Immunity
2002
, vol. 
17
 (pg. 
235
-
238
)
94
Lied
G. A.
Berstad
A.
Functional and clinical aspects of the B-cell-activating factor (BAFF): a narrative review
Scand. J. Immunol.
2011
, vol. 
73
 (pg. 
1
-
7
)
95
Vincent
F. B.
Saulep-Easton
D.
Figgett
W. A.
Fairfax
K. A.
Mackay
F.
The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev
2013
, vol. 
24
 (pg. 
203
-
215
)
96
Chhabra
M.
Conlon
T. M.
Saeb-Parsy
K.
Pettigrew
G. J.
BAFF and associated TNF superfamily members in renal transplantation: an end to blysful ignorance
Transplantation
2013
, vol. 
96
 (pg. 
853
-
859
)
97
Croft
M.
Duan
W.
Choi
H.
Eun
S. Y.
Madireddi
S.
Mehta
A.
TNF superfamily in inflammatory disease: translating basic insights
Trends Immunol.
2012
, vol. 
33
 (pg. 
144
-
152
)
98
Nadiminty
N.
Chun
J. Y.
Hu
Y.
Dutt
S.
Lin
X.
Gao
A. C.
LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway
Biochem. Biophys. Res. Commun.
2007
, vol. 
359
 (pg. 
379
-
384
)
99
Morel
Y.
Truneh
A.
Costello
R. T.
Olive
D.
LIGHT, a new TNF superfamily member, is essential for memory T helper cell-mediated activation of dendritic cells
Eur. J. Immunol.
2003
, vol. 
33
 (pg. 
3213
-
3219
)
100
Dinarello
C. A.
Marnoy
S. O.
Rosenwasser
L. J.
Role of arachidonate metabolism in the immunoregulatory function of human leukocytic pyrogen/lymphocyte-activating factor/interleukin 1
J. Immunol.
1983
, vol. 
130
 (pg. 
890
-
895
)
101
Kobayashi
Y.
Yamamoto
K.
Saido
T.
Kawasaki
H.
Oppenheim
J. J.
Matsushima
K.
Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 α
Proc. Natl. Acad. Sci. U.S.A.
1990
, vol. 
87
 (pg. 
5548
-
5552
)
102
Kostura
M. J.
Tocci
M. J.
Limjuco
G.
Chin
J.
Cameron
P.
Hillman
A. G.
Chartrain
N. A.
Schmidt
J. A.
Identification of a monocyte specific pre-interleukin 1 β convertase activity
Proc. Natl. Acad. Sci. U.S.A.
1989
, vol. 
86
 (pg. 
5227
-
5231
)
103
Ahmad
R.
Sylvester
J.
Zafarullah
M.
MyD88, IRAK1 and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation
Cell. Signal.
2007
, vol. 
19
 (pg. 
2549
-
2557
)
104
Elias
J. A.
Reynolds
M. M.
Kotloff
R. M.
Kern
J. A.
Fibroblast interleukin 1 β: synergistic stimulation by recombinant interleukin 1 and tumor necrosis factor and posttranscriptional regulation
Proc. Natl. Acad. Sci. U.S.A.
1989
, vol. 
86
 (pg. 
6171
-
6175
)
105
Blech
M.
Peter
D.
Fischer
P.
Bauer
M. M.
Hafner
M.
Zeeb
M.
Nar
H.
One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β
J. Mol. Biol.
2013
, vol. 
425
 (pg. 
94
-
111
)
106
Ruperto
N.
Quartier
P.
Wulffraat
N.
Woo
P.
Ravelli
A.
Mouy
R.
Bader-Meunier
B.
Vastert
S. J.
Noseda
E.
D’Ambrosio
D.
, et al. 
A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features
Arthritis Rheum.
2012
, vol. 
64
 (pg. 
557
-
567
)
107
Krause
K.
Mahamed
A.
Weller
K.
Metz
M.
Zuberbier
T.
Maurer
M.
Efficacy and safety of canakinumab in urticarial vasculitis: an open-label study
J. Allergy Clin. Immunol.
2013
, vol. 
132
 (pg. 
751
-
754
)
108
Ridker
P. M.
Thuren
T.
Zalewski
A.
Libby
P.
Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS)
Am. Heart J.
2011
, vol. 
162
 (pg. 
597
-
605
)
109
Moran
A.
Bundy
B.
Becker
D. J.
DiMeglio
L. A.
Gitelman
S. E.
Goland
R.
Greenbaum
C. J.
Herold
K. C.
Marks
J. B.
Raskin
P.
, et al. 
Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials
Lancet
2013
, vol. 
381
 (pg. 
1905
-
1915
)
110
Lovell
D. J.
Giannini
E. H.
Reiff
A. O.
Kimura
Y.
Li
S.
Hashkes
P. J.
Wallace
C. A.
Onel
K. B.
Foell
D.
Wu
R.
, et al. 
Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis (sJIA)
Arthritis Rheum.
2013
, vol. 
65
 (pg. 
2486
-
2496
)
111
Dinarello
C. A.
Simon
A.
van der Meer
J. W.
Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases
Nat. Rev. Drug Discov.
2012
, vol. 
11
 (pg. 
633
-
652
)
112
McIntyre
K. W.
Stepan
G. J.
Kolinsky
K. D.
Benjamin
W. R.
Plocinski
J. M.
Kaffka
K. L.
Campen
C. A.
Chizzonite
R. A.
Kilian
P. L.
Inhibition of interleukin 1 (IL-1) binding and bioactivity in vitro and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti-IL-1 receptor monoclonal antibody
J. Exp. Med.
1991
, vol. 
173
 (pg. 
931
-
939
)
113
Cascavilla
N.
Bisceglia
M.
D’Arena
G.
Successful treatment of Schnitzler's syndrome with anakinra after failure of rituximab trial
Int. J. Immunopathol. Pharmacol.
2010
, vol. 
23
 (pg. 
633
-
636
)
114
Alpay
N.
Sumnu
A.
Caliskan
Y.
Yazici
H.
Turkmen
A.
Gul
A.
Efficacy of anakinra treatment in a patient with colchicine-resistant familial Mediterranean fever
Rheumatol. Int.
2010
, vol. 
32
 (pg. 
3277
-
3279
)
115
Piper
S. C.
Ferguson
J.
Kay
L.
Parker
L. C.
Sabroe
I.
Sleeman
M. A.
Briend
E.
Finch
D. K.
The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells
PLoS ONE
2013
, vol. 
8
 pg. 
e63365
 
116
Bachmann
M.
Horn
K.
Poleganov
M. A.
Paulukat
J.
Nold
M.
Pfeilschifter
J.
Muhl
H.
Interleukin-18 secretion and Th1-like cytokine responses in human peripheral blood mononuclear cells under the influence of the toll-like receptor-5 ligand flagellin
Cell. Microbiol.
2006
, vol. 
8
 (pg. 
289
-
300
)
117
Omoto
Y.
Yamanaka
K.
Tokime
K.
Kitano
S.
Kakeda
M.
Akeda
T.
Kurokawa
I.
Gabazza
E. C.
Tsutsui
H.
Katayama
N.
, et al. 
Granzyme B is a novel interleukin-18 converting enzyme
J. Dermatol. Sci.
2010
, vol. 
59
 (pg. 
129
-
135
)
118
Fujita
K.
Ewing
C. M.
Isaacs
W. B.
Pavlovich
C. P.
Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status
Int. J. Cancer
2011
, vol. 
129
 (pg. 
424
-
432
)
119
Shigehara
K.
Shijubo
N.
Ohmichi
M.
Yamada
G.
Takahashi
R.
Okamura
H.
Kurimoto
M.
Hiraga
Y.
Tatsuno
T.
Abe
S.
Sato
N.
Increased levels of interleukin-18 in patients with pulmonary sarcoidosis
Am. J. Respir. Crit. Care Med.
2000
, vol. 
162
 (pg. 
1979
-
1982
)
120
Striz
I.
Krasna
E.
Honsova
E.
Lacha
J.
Petrickova
K.
Jaresova
M.
Lodererova
A.
Bohmova
R.
Valhova
S.
Slavcev
A.
Vitko
S.
Interleukin 18 (IL-18) upregulation in acute rejection of kidney allograft
Immunol. Lett
2005
, vol. 
99
 (pg. 
30
-
35
)
121
Tanaka
H.
Miyazaki
N.
Oashi
K.
Teramoto
S.
Shiratori
M.
Hashimoto
M.
Ohmichi
M.
Abe
S.
IL-18 might reflect disease activity in mild and moderate asthma exacerbation
J. Allergy Clin. Immunol.
2001
, vol. 
107
 (pg. 
331
-
336
)
122
Lettesjo
H.
Hansson
T.
Bergqvist
A.
Gronlund
J.
Dannaeus
A.
Enhanced interleukin-18 levels in the peripheral blood of children with coeliac disease
Clin. Exp. Immunol.
2005
, vol. 
139
 (pg. 
138
-
143
)
123
Hultgren
O.
Andersson
B.
Hahn-Zoric
M.
Almroth
G.
Serum concentration of interleukin-18 is up-regulated in patients with ANCA-associated vasculitis
Autoimmunity
2007
, vol. 
40
 (pg. 
529
-
531
)
124
Altinova
A. E.
Yetkin
I.
Akbay
E.
Bukan
N.
Arslan
M.
Serum IL-18 levels in patients with type 1 diabetes: relations to metabolic control and microvascular complications
Cytokine
2008
, vol. 
42
 (pg. 
217
-
221
)
125
Gangemi
S.
Mallamace
A.
Minciullo
P. L.
Santoro
D.
Merendino
R. A.
Savica
V.
Bellinghieri
G.
Involvement of interleukin-18 in patients on maintenance haemodialysis
Am. J. Nephrol.
2002
, vol. 
22
 (pg. 
417
-
421
)
126
Tarhini
A. A.
Millward
M.
Mainwaring
P.
Kefford
R.
Logan
T.
Pavlick
A.
Kathman
S. J.
Laubscher
K. H.
Dar
M. M.
Kirkwood
J. M.
A phase 2, randomized study of SB-485232, rhIL-18, in patients with previously untreated metastatic melanoma
Cancer
2009
, vol. 
115
 (pg. 
859
-
868
)
127
Wang
J.
Long
Q.
Zhang
W.
Chen
N.
Protective effects of exogenous interleukin 18-binding protein in a rat model of acute renal ischemia-reperfusion injury
Shock
2012
, vol. 
37
 (pg. 
333
-
340
)
128
Fujita
K.
Ewing
C. M.
Isaacs
W. B.
Pavlovich
C. P.
Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status
Int. J. Cancer
2011
, vol. 
129
 (pg. 
424
-
432
)
129
Dinarello
C. A.
An IL-1 family member requires caspase-1 processing and signals through the ST2 receptor
Immunity
2005
, vol. 
23
 (pg. 
461
-
462
)
130
Kuchler
A. M.
Pollheimer
J.
Balogh
J.
Sponheim
J.
Manley
L.
Sorensen
D. R.
De Angelis
P. M.
Scott
H.
Haraldsen
G.
Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation
Am. J. Pathol.
2008
, vol. 
173
 (pg. 
1229
-
1242
)
131
Pichery
M.
Mirey
E.
Mercier
P.
Lefrancais
E.
Dujardin
A.
Ortega
N.
Girard
J. P.
Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain
J. Immunol.
2012
, vol. 
188
 (pg. 
3488
-
3495
)
132
Moussion
C.
Ortega
N.
Girard
J. P.
The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?
PLoS ONE
2008
, vol. 
3
 pg. 
e3331
 
133
Kondo
Y.
Yoshimoto
T.
Yasuda
K.
Futatsugi-Yumikura
S.
Morimoto
M.
Hayashi
N.
Hoshino
T.
Fujimoto
J.
Nakanishi
K.
Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system
Int. Immunol.
2008
, vol. 
20
 (pg. 
791
-
800
)
134
Allakhverdi
Z.
Smith
D. E.
Comeau
M. R.
Delespesse
G.
Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells
J. Immunol.
2007
, vol. 
179
 (pg. 
2051
-
2054
)
135
Cherry
W. B.
Yoon
J.
Bartemes
K. R.
Iijima
K.
Kita
H.
A novel IL-1 family cytokine, IL-33, potently activates human eosinophils
J. Allergy Clin. Immunol.
2008
, vol. 
121
 (pg. 
1484
-
1490
)
136
Salmond
R. J.
Mirchandani
A. S.
Besnard
A. G.
Bain
C. C.
Thomson
N. C.
Liew
F. Y.
IL-33 induces innate lymphoid cell-mediated airway inflammation by activating mammalian target of rapamycin
J. Allergy Clin. Immunol.
2012
, vol. 
130
 (pg. 
1159
-
1166
)
137
Besnard
A. G.
Togbe
D.
Guillou
N.
Erard
F.
Quesniaux
V.
Ryffel
B.
IL-33-activated dendritic cells are critical for allergic airway inflammation
Eur. J. Immunol.
2011
, vol. 
41
 (pg. 
1675
-
1686
)
138
Komai-Koma
M.
Brombacher
F.
Pushparaj
P. N.
Arendse
B.
McSharry
C.
Alexander
J.
Chaudhuri
R.
Thomson
N. C.
McKenzie
A. N.
McInnes
I.
, et al. 
Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice
Allergy
2012
, vol. 
67
 (pg. 
1118
-
1126
)
139
Bourgeois
E.
Van
L. P.
Samson
M.
Diem
S.
Barra
A.
Roga
S.
Gombert
J. M.
Schneider
E.
Dy
M.
Gourdy
P.
, et al. 
The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-γ production
Eur. J. Immunol.
2009
, vol. 
39
 (pg. 
1046
-
1055
)
140
Yang
Q.
Li
G.
Zhu
Y.
Liu
L.
Chen
E.
Turnquist
H.
Zhang
X.
Finn
O. J.
Chen
X.
Lu
B.
IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells
Eur. J. Immunol.
2011
, vol. 
41
 (pg. 
3351
-
3360
)
141
Liu
X.
Li
M.
Wu
Y.
Zhou
Y.
Zeng
L.
Huang
T.
Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma
Biochem. Biophys. Res. Commun.
2009
, vol. 
386
 (pg. 
181
-
185
)
142
Kim
Y. H.
Yang
T. Y.
Park
C. S.
Ahn
S. H.
Son
B. K.
Kim
J. H.
Lim
D. H.
Jang
T. Y.
Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis
Allergy
2012
, vol. 
67
 (pg. 
183
-
190
)
143
Carrier
Y.
Ma
H. L.
Ramon
H. E.
Napierata
L.
Small
C.
O’Toole
M.
Young
D. A.
Fouser
L. A.
Nickerson-Nutter
C.
Collins
M.
, et al. 
Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis
J. Invest. Dermatol.
2011
, vol. 
131
 (pg. 
2428
-
2437
)
144
Tortola
L.
Rosenwald
E.
Abel
B.
Blumberg
H.
Schafer
M.
Coyle
A. J.
Renauld
J. C.
Werner
S.
Kisielow
J.
Kopf
M.
Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk
J. Clin. Invest.
2012
, vol. 
122
 (pg. 
3965
-
3976
)
145
Kolesar
L.
Brabcova
E.
Thorburn
E.
Sekerkova
A.
Brabcova
I.
Jaresova
M.
Viklicky
O.
Striz
I.
Cytokine gene expression profile in monocytic cells after a co-culture with epithelial cells
Immunol. Res.
2012
, vol. 
52
 (pg. 
269
-
275
)
146
Boraschi
D.
Lucchesi
D.
Hainzl
S.
Leitner
M.
Maier
E.
Mangelberger
D.
Oostingh
G. J.
Pfaller
T.
Pixner
C.
Posselt
G.
, et al. 
IL-37: a new anti-inflammatory cytokine of the IL-1 family
Eur. Cytokine Netw.
2011
, vol. 
22
 (pg. 
127
-
147
)
147
Nold
M. F.
Nold-Petry
C. A.
Zepp
J. A.
Palmer
B. E.
Bufler
P.
Dinarello
C. A.
IL-37 is a fundamental inhibitor of innate immunity
Nat. Immunol.
2010
, vol. 
11
 (pg. 
1014
-
1022
)
148
Tete
S.
Tripodi
D.
Rosati
M.
Conti
F.
Maccauro
G.
Saggini
A.
Cianchetti
E.
Caraffa
A.
Antinolfi
P.
Toniato
E.
, et al. 
IL-37 (IL-1F7) the newest anti-inflammatory cytokine which suppresses immune responses and inflammation
Int. J. Immunopathol. Pharmacol.
2012
, vol. 
25
 (pg. 
31
-
38
)
149
van de Veerdonk
F. L.
Stoeckman
A. K.
Wu
G.
Boeckermann
A. N.
Azam
T.
Netea
M. G.
Joosten
L. A.
van der Meer
J. W.
Hao
R.
Kalabokis
V.
Dinarello
C. A.
IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist
Proc. Nat.l Acad. Sci. U.S.A.
2012
, vol. 
109
 (pg. 
3001
-
3005
)
150
Horii
Y.
Muraguchi
A.
Suematsu
S.
Matsuda
T.
Yoshizaki
K.
Hirano
T.
Kishimoto
T.
Regulation of BSF-2/IL-6 production by human mononuclear cells. Macrophage-dependent synthesis of BSF-2/IL-6 by T cells
J. Immunol.
1988
, vol. 
141
 (pg. 
1529
-
1535
)
151
Striz
I.
Mio
T.
Adachi
Y.
Romberger
D. J.
Rennard
S. I.
Th2-type cytokines modulate IL-6 release by human bronchial epithelial cells
Immunol. Lett.
1999
, vol. 
70
 (pg. 
83
-
88
)
152
Donnelly
R. P.
Crofford
L. J.
Freeman
S. L.
Buras
J.
Remmers
E.
Wilder
R. L.
Fenton
M. J.
Tissue-specific regulation of IL-6 production by IL-4. Differential effects of IL-4 on nuclear factor-κB activity in monocytes and fibroblasts
J. Immunol.
1993
, vol. 
151
 (pg. 
5603
-
5612
)
153
Rougier
F.
Cornu
E.
Praloran
V.
Denizot
Y.
IL-6 and IL-8 production by human bone marrow stromal cells
Cytokine
1998
, vol. 
10
 (pg. 
93
-
97
)
154
Riedemann
N. C.
Guo
R. F.
Hollmann
T. J.
Gao
H.
Neff
T. A.
Reuben
J. S.
Speyer
C. L.
Sarma
J. V.
Wetsel
R. A.
Zetoune
F. S.
Ward
P. A.
Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis
FASEB J.
2004
, vol. 
18
 (pg. 
370
-
372
)
155
Oldford
S. A.
Haidl
I. D.
Howatt
M. A.
Leiva
C. A.
Johnston
B.
Marshall
J. S.
A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth
J. Immunol.
2010
, vol. 
185
 (pg. 
7067
-
7076
)
156
Sofi
M. H.
Li
W.
Kaplan
M. H.
Chang
C. H.
Elevated IL-6 expression in CD4 T cells via PKCθ and NF-κB induces Th2 cytokine production
Mol. Immunol.
2009
, vol. 
46
 (pg. 
1443
-
1450
)
157
Baccam
M.
Bishop
G. A.
Membrane-bound CD154, but not CD40-specific antibody, mediates NF-κB-independent IL-6 production in B cells
Eur. J. Immunol.
1999
, vol. 
29
 (pg. 
3855
-
3866
)
158
Shabo
Y.
Lotem
J.
Rubinstein
M.
Revel
M.
Clark
S. C.
Wolf
S. F.
Kamen
R.
Sachs
L.
The myeloid blood cell differentiation-inducing protein MGI-2A is interleukin-6
Blood
1988
, vol. 
72
 (pg. 
2070
-
2073
)
159
Rabinowich
H.
Sedlmayr
P.
Herberman
R. B.
Whiteside
T. L.
Response of human NK cells to IL-6 alterations of the cell surface phenotype, adhesion to fibronectin and laminin, and tumor necrosis factor-α/β secretion
J. Immunol.
1993
, vol. 
150
 (pg. 
4844
-
4855
)
160
Tormo
A. J.
Letellier
M. C.
Sharma
M.
Elson
G.
Crabe
S.
Gauchat
J. F.
IL-6 activates STAT5 in T cells
Cytokine
2012
, vol. 
60
 (pg. 
575
-
582
)
161
Hilbert
D. M.
Cancro
M. P.
Scherle
P. A.
Nordan
R. P.
Van Snick
J.
Gerhard
W.
Rudikoff
S.
T cell derived IL-6 is differentially required for antigen-specific antibody secretion by primary and secondary B cells
J. Immunol.
1989
, vol. 
143
 (pg. 
4019
-
4024
)
162
Castell
J. V.
Gomez-Lechon
M. J.
David
M.
Hirano
T.
Kishimoto
T.
Heinrich
P. C.
Recombinant human interleukin-6 (IL-6/BSF-2/HSF) regulates the synthesis of acute phase proteins in human hepatocytes
FEBS Lett.
1988
, vol. 
232
 (pg. 
347
-
350
)
163
Fleischmann
R. M.
Halland
A. M.
Brzosko
M.
Burgos-Vargas
R.
Mela
C.
Vernon
E.
Kremer
J. M.
Tocilizumab inhibits structural joint damage and improves physical function in patients with rheumatoid arthritis and inadequate responses to methotrexate: LITHE study 2-year results
J. Rheumatol.
2013
, vol. 
40
 (pg. 
113
-
126
)
164
Buckland
J.
Rheumatoid arthritis: tocilizumab monotherapy and adalimumab monotherapy go head-to-head in RA
Nat. Rev. Rheumatol.
2013
, vol. 
9
 pg. 
260
 
165
Aguilar-Lozano
L.
Castillo-Ortiz
J. D.
Vargas-Serafin
C.
Morales-Torres
J.
Sanchez-Ortiz
A.
Sandoval-Castro
C.
Padilla-Ibarra
J.
Hernandez-Cuevas
C.
Ramos-Remus
C.
Sustained clinical remission and rate of relapse after tocilizumab withdrawal in patients with rheumatoid arthritis
J. Rheumatol.
2013
, vol. 
40
 (pg. 
1069
-
1073
)
166
De Benedetti
F.
Brunner
H. I.
Ruperto
N.
Kenwright
A.
Wright
S.
Calvo
I.
Cuttica
R.
Ravelli
A.
Schneider
R.
Woo
P.
, et al. 
Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis
N. Engl. J. Med.
2012
, vol. 
367
 (pg. 
2385
-
2395
)
167
Isik
M.
Kilic
L.
Dogan
I.
Calguneri
M.
Tocilizumab for giant cell arteritis: an amazing result
Rheumatol. Int.
2012
, vol. 
33
 (pg. 
2961
-
2962
)
168
Araki
M.
Aranami
T.
Matsuoka
T.
Nakamura
M.
Miyake
S.
Yamamura
T.
Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab
Mod. Rheumatol.
2013
, vol. 
23
 (pg. 
827
-
831
)
169
Fiala
M.
Mizwicki
M. T.
Weitzman
R.
Magpantay
L.
Nishimoto
N.
Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients
Am. J. Neurodeg. Dis.
2013
, vol. 
2
 (pg. 
129
-
139
)
170
Szepietowski
J. C.
Nilganuwong
S.
Wozniacka
A.
Kuhn
A.
Nyberg
F.
van Vollenhoven
R. F.
Bengtsson
A. A.
Reich
A.
de Vries
D. E.
van Hartingsveldt
B.
, et al. 
Phase 1, randomized, double-blind, placebo-controlled, multiple intravenous, dose-ascending study of sirukumab in cutaneous or systemic lupus erythematosus
Arthritis Rheum.
2013
, vol. 
65
 (pg. 
2661
-
2671
)
171
Reichert
J. M.
Antibodies to watch in 2013: Mid-year update
mAbs
2013
, vol. 
5
 (pg. 
513
-
517
)
172
Taga
T.
The signal transducer gp130 is shared by interleukin-6 family of haematopoietic and neurotrophic cytokines
Ann. Med.
1997
, vol. 
29
 (pg. 
63
-
72
)
173
Kasraie
S.
Niebuhr
M.
Werfel
T.
Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins
Allergy
2010
, vol. 
65
 (pg. 
712
-
721
)
174
Adachi
Y.
Mio
T.
Takigawa
K.
Striz
I.
Romberger
D. J.
Robbins
R. A.
Spurzem
J. R.
Heires
P.
Rennard
S. I.
Mutual inhibition by TGF-β and IL-4 in cultured human bronchial epithelial cells
Am. J. Physiol.
1997
, vol. 
273
 (pg. 
L701
-
L708
)
175
Gonzalez-Navajas
J. M.
Lee
J.
David
M.
Raz
E.
Immunomodulatory functions of type I interferons
Nat. Rev. Immunol.
2012
, vol. 
12
 (pg. 
125
-
135
)
176
Benveniste
E. N.
Qin
H.
Type I interferons as anti-inflammatory mediators
Sci. STKE
2007
, vol. 
416
 pg. 
pe70
 
177
Striz
I.
Mio
T.
Adachi
Y.
Carnevali
S.
Romberger
D. J.
Rennard
S. I.
Effects of interferons α and γ on cytokine production and phenotypic pattern of human bronchial epithelial cells
Int. J. Immunopharmacol.
2000
, vol. 
22
 (pg. 
573
-
585
)
178
Yang
Y. F.
Zhao
W.
Xia
H. M.
Zhong
Y. D.
Huang
P.
Wen
J.
Long-term efficacy of interferon α therapy on hepatitis B viral replication in patients with chronic hepatitis B: a meta-analysis
Antivir. Res.
2010
, vol. 
85
 (pg. 
361
-
365
)
179
Gibbert
K.
Schlaak
J. F.
Yang
D.
Dittmer
U.
IFN-α subtypes: distinct biological activities in anti-viral therapy
Br. J. Pharmacol.
2013
, vol. 
168
 (pg. 
1048
-
1058
)
180
Chapman
J.
Oser
M.
Hockemeyer
J.
Weitlauf
J.
Jones
S.
Cheung
R.
Changes in depressive symptoms and impact on treatment course among hepatitis C patients undergoing interferon-α and ribavirin therapy: a prospective evaluation
Am. J. Gastroenterol.
2011
, vol. 
106
 (pg. 
2123
-
2132
)
181
Foster
N.
Hulme
S. D.
Barrow
P. A.
Induction of antimicrobial pathways during early-phase immune response to Salmonella spp. in murine macrophages: γ interferon (IFN-γ) and upregulation of IFN-γ receptor α expression are required for NADPH phagocytic oxidase gp91-stimulated oxidative burst and control of virulent Salmonella spp
Infect. Immun.
2003
, vol. 
71
 (pg. 
4733
-
4741
)
182
Frasca
L.
Nasso
M.
Spensieri
F.
Fedele
G.
Palazzo
R.
Malavasi
F.
Ausiello
C. M.
IFN-γ arms human dendritic cells to perform multiple effector functions
J. Immunol.
2008
, vol. 
180
 (pg. 
1471
-
1481
)
183
Giacomini
P.
Tecce
R.
Gambari
R.
Sacchi
A.
Fisher
P. B.
Natali
P. G.
Recombinant human IFN-γ, but not IFN-α or IFN-β, enhances MHC- and non-MHC-encoded glycoproteins by a protein synthesis-dependent mechanism
J. Immunol.
1988
, vol. 
140
 (pg. 
3073
-
3081
)
184
Kelleher
P.
Goodsall
A.
Mulgirigama
A.
Kunst
H.
Henderson
D. C.
Wilson
R.
Newman-Taylor
A.
Levin
M.
Interferon-γ therapy in two patients with progressive chronic pulmonary aspergillosis
Eur. Respir. J.
2006
, vol. 
27
 (pg. 
1307
-
1310
)
185
Cui
D.
Huang
G.
Yang
D.
Huang
B.
An
B.
Efficacy and safety of interferon-γ-targeted therapy in Crohn's disease: A systematic review and meta-analysis of randomized controlled trials
Clin. Res. Hepatol. Gastroenterol.
2013
, vol. 
37
 (pg. 
507
-
513
)
186
Ioannidis
I.
Ye
F.
McNally
B.
Willette
M.
Flano
E.
Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells
J. Virol.
2013
, vol. 
87
 (pg. 
3261
-
3270
)
187
Witte
K.
Witte
E.
Sabat
R.
Wolk
K.
IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties
Cytokine Growth Factor Rev.
2010
, vol. 
21
 (pg. 
237
-
251
)
188
Commins
S.
Steinke
J. W.
Borish
L.
The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29
J. Allergy Clin. Immunol.
2008
, vol. 
121
 (pg. 
1108
-
1111
)
189
Richardson
M. D.
Brownlie
C. E.
Shankland
G. S.
Enhanced phagocytosis and intracellular killing of Candida albicans by GM-CSF-activated human neutrophils
J. Med. Vet. Mycol.
1992
, vol. 
30
 (pg. 
433
-
441
)
190
Parajuli
B.
Sonobe
Y.
Kawanokuchi
J.
Doi
Y.
Noda
M.
Takeuchi
H.
Mizuno
T.
Suzumura
A.
GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia
J. Neuroinflammation
2012
, vol. 
9
 pg. 
268
 
191
Tai
P. C.
Sun
L.
Spry
C. J.
Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro
Clin. Exp. Immunol.
1991
, vol. 
85
 (pg. 
312
-
316
)
192
Bozinovski
S.
Jones
J. E.
Vlahos
R.
Hamilton
J. A.
Anderson
G. P.
Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFκ B and AP-1 in vivo
J. Biol. Chem.
2002
, vol. 
277
 (pg. 
42808
-
42814
)
193
Vlahos
R.
Bozinovski
S.
Chan
S. P.
Ivanov
S.
Lindén
A.
Hamilton
J. A.
Anderson
G. P.
Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation Am
J. Respir. Crit. Care Med.
2010
, vol. 
182
 (pg. 
34
-
40
)
194
Gulati
S. C.
Bennett
C. L.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin disease
Ann. Int. Med.
1992
, vol. 
116
 (pg. 
177
-
182
)
195
Burmester
G. R.
Weinblatt
M. E.
McInnes
I. B.
Porter
D.
Barbarash
O.
Vatutin
M.
Szombati
I.
Esfandiari
E.
Sleeman
M. A.
Kane
C. D.
, et al. 
Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis
Ann. Rheum. Dis.
2013
, vol. 
72
 (pg. 
1445
-
1452
)
196
Tsuji
T.
Sugimoto
K.
Yanai
T.
Takashita
E.
Mori
K. J.
Induction of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in bone marrow and fractionated marrow cell populations by interleukin 3 (IL-3): IL-3-mediated positive feedback mechanisms of granulopoiesis
Growth Factors
1994
, vol. 
11
 (pg. 
71
-
79
)
197
Roberts
A. W.
G-CSF: a key regulator of neutrophil production, but that's not all!
Growth Factors
2005
, vol. 
23
 (pg. 
33
-
41
)
198
Holowiecki
J.
Giebel
S.
Krzemien
S.
Krawczyk-Kulis
M.
Jagoda
K.
Kopera
M.
Holowiecka
B.
Grosicki
S.
Hellmann
A.
Dmoszynska
A.
, et al. 
G-CSF administered in time-sequenced setting during remission induction and consolidation therapy of adult acute lymphoblastic leukemia has beneficial influence on early recovery and possibly improves long-term outcome: a randomized multicenter study
Leuk. Lymphoma
2002
, vol. 
43
 (pg. 
315
-
325
)
199
Shim
W.
Mehta
A.
Lim
S. Y.
Zhang
G.
Lim
C. H.
Chua
T.
Wong
P.
G-CSF for stem cell therapy in acute myocardial infarction: friend or foe?
Cardiovasc. Res.
2011
, vol. 
89
 (pg. 
20
-
30
)
200
Wildbaum
G.
Shahar
E.
Katz
R.
Karin
N.
Etzioni
A.
Pollack
S.
Continuous G-CSF therapy for isolated chronic mucocutaneous candidiasis: Complete clinical remission with restoration of IL-17 secretion
J. Allergy Clin. Immunol.
2013
, vol. 
132
 (pg. 
761
-
764
)
201
Nomiyama
H.
Osada
N.
Yoshie
O.
Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history
Genes Cells
2013
, vol. 
18
 (pg. 
1
-
16
)
202
Blanchet
X.
Langer
M.
Weber
C.
Koenen
R. R.
von Hundelshausen
P.
Touch of chemokines
Front. Immunol.
2012
, vol. 
3
 pg. 
175
 
203
De Vries
M. E.
Hosiawa
K. A.
Cameron
C. M.
Bosinger
S. E.
Persad
D.
Kelvin
A. A.
Coombs
J. C.
Wang
H.
Zhong
R.
Cameron
M. J.
Kelvin
D. J.
The role of chemokines and chemokine receptors in alloantigen-independent and alloantigen-dependent transplantation injury
Semin. Immunol.
2003
, vol. 
15
 (pg. 
33
-
48
)
204
Yun
J. J.
Fischbein
M. P.
Whiting
D.
Irie
Y.
Fishbein
M. C.
Burdick
M. D.
Belperio
J.
Strieter
R. M.
Laks
H.
Berliner
J. A.
Ardehali
A.
The role of MIG/CXCL9 in cardiac allograft vasculopathy
Am. J. Pathol.
2002
, vol. 
161
 (pg. 
1307
-
1313
)
205
Hurst
S. M.
Wilkinson
T. S.
McLoughlin
R. M.
Jones
S.
Horiuchi
S.
Yamamoto
N.
Rose-John
S.
Fuller
G. M.
Topley
N.
Jones
S. A.
Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation
Immunity
2001
, vol. 
14
 (pg. 
705
-
714
)
206
Owen
J. L.
Mohamadzadeh
M.
Macrophages and chemokines as mediators of angiogenesis
Front. Physiol.
2013
, vol. 
4
 pg. 
159
 
207
Sahin
H.
Wasmuth
H. E.
Chemokines in tissue fibrosis
Biochim. Biophys. Acta
2013
, vol. 
1832
 (pg. 
1041
-
1048
)
208
Viola
A.
Sarukhan
A.
Bronte
V.
Molon
B.
The pros and cons of chemokines in tumor immunology
Trends Immunol.
2012
, vol. 
33
 (pg. 
496
-
504
)
209
Allegretti
M.
Cesta
M. C.
Garin
A.
Proudfoot
A. E.
Current status of chemokine receptor inhibitors in development
Immunol. Lett.
2012
, vol. 
145
 (pg. 
68
-
78
)
210
Henrich
T. J.
Kuritzkes
D. R.
HIV-1 entry inhibitors: recent development and clinical use
Curr. Opin. Virology
2013
, vol. 
3
 (pg. 
51
-
57
)
211
De Blasio
A.
Rossi
L.
Zappone
E.
Ortu La Barbera
E.
Salvatori
R.
Pacilli
M.
Carbone
A.
Zaccarelli
E.
Papa
A.
Tomao
S.
Plerixafor and autologous stem cell transplantation: impressive result in a chemoresistant testicular cancer patient treated with high-dose chemotherapy
Anticancer Drugs
2013
, vol. 
24
 (pg. 
653
-
657
)
212
Keshav
S.
Vanasek
T.
Niv
Y.
Petryka
R.
Howaldt
S.
Bafutto
M.
Racz
I.
Hetzel
D.
Nielsen
O. H.
Vermeire
S.
, et al. 
A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn's disease
PLoS ONE
2013
, vol. 
8
 pg. 
e60094
 
213
Jiang
S.
Dong
C.
A complex issue on CD4+ T-cell subsets
Immunol. Rev.
2013
, vol. 
252
 (pg. 
5
-
11
)
214
Kolls
J. K.
CD4+ T-cell subsets and host defense in the lung
Immunol. Rev.
2013
, vol. 
252
 (pg. 
156
-
163
)
215
Akdis
M.
Palomares
O.
van de Veen
W.
van Splunter
M.
Akdis
C. A.
TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection
J. Allergy Clin. Immunol.
2012
, vol. 
129
 (pg. 
1438
-
1449
)
216
Lyakh
L.
Trinchieri
G.
Provezza
L.
Carra
G.
Gerosa
F.
Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans
Immunol. Rev.
2008
, vol. 
226
 (pg. 
112
-
131
)
217
Ghalib
H. W.
Whittle
J. A.
Kubin
M.
Hashim
F. A.
el-Hassan
A. M.
Grabstein
K. H.
Trinchieri
G.
Reed
S. G.
IL-12 enhances Th1-type responses in human Leishmania donovani infections
J. Immunol.
1995
, vol. 
154
 (pg. 
4623
-
4629
)
218
Chowdhury
F. Z.
Ramos
H. J.
Davis
L. S.
Forman
J.
Farrar
J. D.
IL-12 selectively programs effector pathways that are stably expressed in human CD8+ effector memory T cells in vivo
Blood
2011
, vol. 
118
 (pg. 
3890
-
3900
)
219
Hamza
T.
Barnett
J. B.
Li
B.
Interleukin 12 a key immunoregulatory cytokine in infection applications
Int. J. Mol. Sci.
2010
, vol. 
11
 (pg. 
789
-
806
)
220
Bryan
S. A.
O’Connor
B. J.
Matti
S.
Leckie
M. J.
Kanabar
V.
Khan
J.
Warrington
S. J.
Renzetti
L.
Rames
A.
Bock
J. A.
, et al. 
Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response
Lancet
2000
, vol. 
356
 (pg. 
2149
-
2153
)
221
Wang
Y.
Fan
K. T.
Li
J. M.
Waller
E. K.
The regulation and activity of interleukin-12
Front. Biosci.
2012
, vol. 
4
 (pg. 
888
-
899
)
222
Li
Z.
Wu
F.
Brant
S. R.
Kwon
J. H.
IL-23 receptor regulation by Let-7f in human CD4+ memory T cells
J. Immunol.
2011
, vol. 
186
 (pg. 
6182
-
6190
)
223
McInnes
I. B.
Kavanaugh
A.
Gottlieb
A. B.
Puig
L.
Rahman
P.
Ritchlin
C.
Brodmerkel
C.
Li
S.
Wang
Y.
Mendelsohn
A. M.
, et al. 
Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial
Lancet
2013
, vol. 
382
 (pg. 
780
-
789
)
224
Konijeti
G. G.
Chan
A. T.
Ustekinumab for moderate-to-severe Crohn's disease
Gastroenterology
2013
, vol. 
144
 (pg. 
846
-
848
)
225
Hall
A. O.
Beiting
D. P.
Tato
C.
John
B.
Oldenhove
G.
Lombana
C. G.
Pritchard
G. H.
Silver
J. S.
Bouladoux
N.
Stumhofer
J. S.
, et al. 
The cytokines interleukin 27 and interferon-γ promote distinct Treg cell populations required to limit infection-induced pathology
Immunity
2012
, vol. 
37
 (pg. 
511
-
523
)
226
Wojno
E. D.
Hunter
C. A.
New directions in the basic and translational biology of interleukin-27
Trends Immunol.
2012
, vol. 
33
 (pg. 
91
-
97
)
227
Collison
L. W.
Workman
C. J.
Kuo
T. T.
Boyd
K.
Wang
Y.
Vignali
K. M.
Cross
R.
Sehy
D.
Blumberg
R. S.
Vignali
D. A.
The inhibitory cytokine IL-35 contributes to regulatory T-cell function
Nature
2007
, vol. 
450
 (pg. 
566
-
569
)
228
Whitehead
G. S.
Wilson
R. H.
Nakano
K.
Burch
L. H.
Nakano
H.
Cook
D. N.
IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease
J. Allergy Clin. Immunol.
2012
, vol. 
129
 (pg. 
207
-
215
)
229
Miao
J.
Geng
J.
Zhang
K.
Li
X.
Li
Q.
Li
C.
Zhu
P.
Frequencies of circulating IL-17-producing CD4+CD161+ T cells and CD4+CD161+ T cells correlate with disease activity in rheumatoid arthritis
Mod. Rheumatol.
2013
 
doi: 10.1007/s10165-013-0879-y
230
Korn
T.
Bettelli
E.
Oukka
M.
Kuchroo
V. K.
IL-17 and Th17 Cells
Annu. Rev. Immunol.
2009
, vol. 
27
 (pg. 
485
-
517
)
231
Zhu
S.
Qian
Y.
IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential
Clin. Sci.
2012
, vol. 
122
 (pg. 
487
-
511
)
232
Loverre
A.
Tataranni
T.
Castellano
G.
Divella
C.
Battaglia
M.
Ditonno
P.
Corcelli
M.
Mangino
M.
Gesualdo
L.
Schena
F. P.
Grandaliano
G.
IL-17 expression by tubular epithelial cells in renal transplant recipients with acute antibody-mediated rejection
Am. J. Transplant.
2011
, vol. 
11
 (pg. 
1248
-
1259
)
233
Patel
D. D.
Lee
D. M.
Kolbinger
F.
Antoni
C.
Effect of IL-17A blockade with secukinumab in autoimmune diseases
Ann. Rheum. Dis.
2013
, vol. 
72
 
Suppl. 2
(pg. 
ii116
-
ii123
)
234
Chiricozzi
A.
Krueger
J. G.
IL-17 targeted therapies for psoriasis
Expert Opin. Investig. Drugs
2013
, vol. 
22
 (pg. 
993
-
1005
)
235
Fitzpatrick
L. R.
Inhibition of IL-17 as a Pharmacological Approach for IBD
Int. Rev. Immunol.
2013
, vol. 
32
 (pg. 
544
-
555
)
236
Ramirez-Carrozzi
V.
Sambandam
A.
Luis
E.
Lin
Z.
Jeet
S.
Lesch
J.
Hackney
J.
Kim
J.
Zhou
M.
Lai
J.
, et al. 
IL-17C regulates the innate immune function of epithelial cells in an autocrine manner
Nat. Immunol.
2011
, vol. 
12
 (pg. 
1159
-
1166
)
237
Starnes
T.
Broxmeyer
H. E.
Robertson
M. J.
Hromas
R.
Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis
J. Immunol.
2002
, vol. 
169
 (pg. 
642
-
646
)
238
Suzukawa
M.
Morita
H.
Nambu
A.
Arae
K.
Shimura
E.
Shibui
A.
Yamaguchi
S.
Suzukawa
K.
Nakanishi
W.
Oboki
K.
, et al. 
Epithelial cell-derived IL-25, but not Th17 cell-derived IL-17 or IL-17F, is crucial for murine asthma
J. Immunol.
2012
, vol. 
189
 (pg. 
3641
-
3652
)
239
Song
X.
Qian
Y.
The activation and regulation of IL-17 receptor mediated signaling
Cytokine
2013
, vol. 
62
 (pg. 
175
-
182
)
240
Yang
X. O.
Chang
S. H.
Park
H.
Nurieva
R.
Shah
B.
Acero
L.
Wang
Y. H.
Schluns
K. S.
Broaddus
R. R.
Zhu
Z.
Dong
C.
Regulation of inflammatory responses by IL-17F
J. Exp. Med.
2008
, vol. 
205
 (pg. 
1063
-
1075
)
241
Rochman
Y.
Spolski
R.
Leonard
W. J.
New insights into the regulation of T cells by γc family cytokines
Nat. Rev. Immunol.
2009
, vol. 
9
 (pg. 
480
-
490
)
242
Shalapour
S.
Deiser
K.
Kuhl
A. A.
Glauben
R.
Krug
S. M.
Fischer
A.
Sercan
O.
Chappaz
S.
Bereswill
S.
Heimesaat
M. M.
, et al. 
Interleukin-7 links T lymphocyte and intestinal epithelial cell homeostasis
PLoS ONE
2012
, vol. 
7
 pg. 
e31939
 
243
Takai
T.
TSLP expression: cellular sources, triggers, and regulatory mechanisms
Allergol. Int.
2012
, vol. 
61
 (pg. 
3
-
17
)
244
Uller
L.
Leino
M.
Bedke
N.
Sammut
D.
Green
B.
Lau
L.
Howarth
P. H.
Holgate
S. T.
Davies
D. E.
Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-β in bronchial epithelial cells from donors with asthma
Thorax
2010
, vol. 
65
 (pg. 
626
-
632
)
245
Chen
Z. G.
Zhang
T. T.
Li
H. T.
Chen
F. H.
Zou
X. L.
Ji
J. Z.
Chen
H.
Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite
PLoS ONE
2013
, vol. 
8
 pg. 
e51268
 
246
Perera
P. Y.
Lichy
J. H.
Waldmann
T. A.
Perera
L. P.
The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use
Microbes Infect.
2012
, vol. 
14
 (pg. 
247
-
261
)
247
Vasakova
M.
Sterclova
M.
Kolesar
L.
Slavcev
A.
Pohunek
P.
Sulc
J.
Striz
I.
Cytokine gene polymorphisms and BALF cytokine levels in interstitial lung diseases
Respir. Med.
2009
, vol. 
103
 (pg. 
773
-
779
)
248
Cinek
O.
Vavrincova
P.
Striz
I.
Drevinek
P.
Sedlakova
P.
Vavrinec
J.
Slavcev
A.
Association of single nucleotide polymorphisms within cytokine genes with juvenile idiopathic arthritis in the Czech population
J. Rheumatol.
2004
, vol. 
31
 (pg. 
1206
-
1210
)
249
Savan
R.
Ravichandran
S.
Collins
J. R.
Sakai
M.
Young
H. A.
Structural conservation of interferon γ among vertebrates
Cytokine Growth Factor Rev.
2009
, vol. 
20
 (pg. 
115
-
124
)
250
Enk
C. D.
Sredni
D.
Blauvelt
A.
Katz
S. I.
Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro
J. Immunol.
1995
, vol. 
154
 (pg. 
4851
-
4856
)
251
O’Keefe
G. M.
Nguyen
V. T.
Benveniste
E. N.
Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-β, IL-4, IL-13 and IL-10
Eur. J. Immunol.
1999
, vol. 
29
 (pg. 
1275
-
1285
)
252
Itoh
K.
Hirohata
S.
The role of IL-10 in human B cell activation, proliferation, and differentiation
J. Immunol.
1995
, vol. 
154
 (pg. 
4341
-
4350
)
253
Anon
Interleukin-10. Cytokine synthesis inhibitory factor, SCH 52000, rIL-10, rhIL-10
Drugs R D
1999
, vol. 
1
 (pg. 
262
-
264
)
254
Smeets
T. J.
Kraan
M. C.
Versendaal
J.
Breedveld
F. C.
Tak
P. P.
Analysis of serial synovial biopsies in patients with rheumatoid arthritis: description of a control group without clinical improvement after treatment with interleukin 10 or placebo
J. Rheumatol.
1999
, vol. 
26
 (pg. 
2089
-
2093
)
255
Azuma
Y. T.
Nakajima
H.
Takeuchi
T.
IL-19 as a potential therapeutic in autoimmune and inflammatory diseases
Curr. Pharm. Des.
2011
, vol. 
17
 (pg. 
3776
-
3780
)
256
Alanara
T.
Karstila
K.
Moilanen
T.
Silvennoinen
O.
Isomaki
P.
Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints
Scand. J. Rheumatol.
2010
, vol. 
39
 (pg. 
118
-
126
)
257
Pace
E.
Scafidi
V.
Di Bona
D.
Siena
L.
Chiappara
G.
Ferraro
M.
La Grutta
S.
Gallina
S.
Speciale
R.
Ballacchino
A.
, et al. 
Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps
Allergy
2012
, vol. 
67
 (pg. 
878
-
886
)
258
Lebre
M. C.
Jonckheere
C. L.
Kraan
M. C.
van Kuijk
A. W. R.
Bos
J. D.
de Rie
M.
Gerlag
D. M.
Tak
P. P.
Expression of IL-20 in lesional skin and synovium of patients with psoriatic arthritis compared to rheumatoid arthritis and its response to alefacept treatment
Arthritis Res. Ther.
2012
, vol. 
14
 pg. 
R200
 
259
Kragstrup
T. W.
Otkjaer
K.
Hohn
C.
Jorgensen
A.
Hokland
M.
Iversen
L.
Deleuran
B.
The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy
Cytokine
2008
, vol. 
41
 (pg. 
16
-
23
)
260
Wei
C. C.
Hsu
Y. H.
Li
H. H.
Wang
Y. C.
Hsieh
M. Y.
Chen
W. Y.
Hsing
C. H.
Chang
M. S.
IL-20: biological functions and clinical implications
J. Biomed. Sci.
2006
, vol. 
13
 (pg. 
601
-
612
)
261
Chung
Y. S.
Yang
X. X.
Chang
S. H.
Ma
L.
Tian
Q.
Dong
C.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes
Cell. Res.
2006
, vol. 
16
 (pg. 
902
-
907
)
262
Brand
S.
Beigel
F.
Olszak
T.
Zitzmann
K.
Eichhorst
S. T.
Otte
J. M.
Diepolder
H.
Marquardt
A.
Jagla
W.
Popp
A.
, et al. 
IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration
Am. J. Physiol. Gastrointest. Liver Physiol.
2006
, vol. 
290
 (pg. 
G827
-
G838
)
263
Radaeva
S.
Sun
R.
Pan
H. N.
Hong
F.
Gao
B.
Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation
Hepatology
2004
, vol. 
39
 (pg. 
1332
-
1342
)
264
Sonnenberg
G. F.
Fouser
L. A.
Artis
D.
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
Nat. Immunol.
2011
, vol. 
12
 (pg. 
383
-
390
)
265
Wang
M.
Liang
P.
Interleukin-24 and its receptors
Immunology
2005
, vol. 
114
 (pg. 
166
-
170
)
266
Poindexter
N. J.
Williams
R. R.
Powis
G.
Jen
E.
Caudle
A. S.
Chada
S.
Grimm
E. A.
IL-24 is expressed during wound repair and inhibits TGFα-induced migration and proliferation of keratinocytes
Exp. Dermatol.
2010
, vol. 
19
 (pg. 
714
-
722
)
267
Margue
C.
Kreis
S.
IL-24: physiological and supraphysiological effects on normal and malignant cells
Curr. Med. Chem.
2010
, vol. 
17
 (pg. 
3318
-
3326
)
268
Donnelly
R. P.
Sheikh
F.
Dickensheets
H.
Savan
R.
Young
H. A.
Walter
M. R.
Interleukin-26: An IL-10-related cytokine produced by Th17 cells
Cytokine Growth Factor Rev.
2010
, vol. 
21
 (pg. 
393
-
401
)
269
Cella
M.
Otero
K.
Colonna
M.
Expansion of human NK-22 cells with IL-7, IL-2, and IL-1 β reveals intrinsic functional plasticity
Proc. Natl. Acad. Sci. U.S.A.
2010
, vol. 
107
 (pg. 
10961
-
10966
)
270
Doerner
A. M.
Zuraw
B. L.
TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids
Respir. Res.
2009
, vol. 
10
 pg. 
100
 
271
Werner
F.
Jain
M. K.
Feinberg
M. W.
Sibinga
N. E.
Pellacani
A.
Wiesel
P.
Chin
M. T.
Topper
J. N.
Perrella
M. A.
Lee
M. E.
Transforming growth factor-β 1 inhibition of macrophage activation is mediated via Smad3
J. Biol. Chem.
2000
, vol. 
275
 (pg. 
36653
-
36658
)
272
Taylor
A. W.
Review of the activation of TGF-β in immunity
J. Leukoc. Biol.
2009
, vol. 
85
 (pg. 
29
-
33
)
273
Li
M. O.
Wan
Y. Y.
Sanjabi
S.
Robertson
A. K.
Flavell
R. A.
Transforming growth factor-β regulation of immune responses
Ann. Rev. Immunol.
2006
, vol. 
24
 (pg. 
99
-
146
)
274
Santibanez
J. F.
Quintanilla
M.
Bernabeu
C.
TGF-β/TGF-β receptor system and its role in physiological and pathological conditions
Clin. Sci.
2011
, vol. 
121
 (pg. 
233
-
251
)
275
Li
M. O.
Sanjabi
S.
Flavell
R. A.
Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms
Immunity
2006
, vol. 
25
 (pg. 
455
-
471
)
276
Meng
X. M.
Chung
A. C.
Lan
H. Y.
Role of the TGF-β/BMP-7/Smad pathways in renal diseases
Clin. Sci.
2013
, vol. 
124
 (pg. 
243
-
254
)
277
Halwani
R.
Al-Muhsen
S.
Al-Jahdali
H.
Hamid
Q.
Role of transforming growth factor-β in airway remodeling in asthma
Am. J. Respir. Cell. Mol. Biol.
2011
, vol. 
44
 (pg. 
127
-
133
)
278
Tatler
A. L.
Jenkins
G.
TGF-β activation and lung fibrosis
Proc. Am. Thorac. Soc.
2012
, vol. 
9
 (pg. 
130
-
136
)
279
Trachtman
H.
Fervenza
F. C.
Gipson
D. S.
Heering
P.
Jayne
D. R.
Peters
H.
Rota
S.
Remuzzi
G.
Rump
L. C.
Sellin
L. K.
, et al. 
A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis
Kidney Int.
2011
, vol. 
79
 (pg. 
1236
-
1243
)
280
Lonning
S.
Mannick
J.
McPherson
J. M.
Antibody targeting of TGF-β in cancer patients
Curr. Pharm. Biotech.
2011
, vol. 
12
 (pg. 
2176
-
2189
)
281
Licona-Limon
P.
Soldevila
G.
The role of TGF-β superfamily during T cell development: new insights
Immunol. Lett.
2007
, vol. 
109
 (pg. 
1
-
12
)
282
Sierra-Filardi
E.
Puig-Kroger
A.
Blanco
F. J.
Nieto
C.
Bragado
R.
Palomero
M. I.
Bernabeu
C.
Vega
M. A.
Corbi
A. L.
Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers
Blood
2011
, vol. 
117
 (pg. 
5092
-
5101
)
283
Beenken
A.
Mohammadi
M.
The FGF family: biology, pathophysiology and therapy
Nat. Rev. Drug Discov.
2009
, vol. 
8
 (pg. 
235
-
253
)
284
Heine
G. H.
Seiler
S.
Fliser
D.
FGF-23: the rise of a novel cardiovascular risk marker in CKD
Nephrol. Dial. Transplant.
2012
, vol. 
27
 (pg. 
3072
-
3081
)
285
Andrae
J.
Gallini
R.
Betsholtz
C.
Role of platelet-derived growth factors in physiology and medicine
Genes Dev.
2008
, vol. 
22
 (pg. 
1276
-
1312
)
286
Attar
M. A.
Salem
J. C.
Pursel
H. S.
Santy
L. C.
CNK3 and IPCEF1 produce a single protein that is required for HGF dependent Arf6 activation and migration
Exp. Cell Res.
2012
, vol. 
318
 (pg. 
228
-
237
)
287
Qian
F.
Engst
S.
Yamaguchi
K.
Yu
P.
Won
K. A.
Mock
L.
Lou
T.
Tan
J.
Li
C.
Tam
D.
, et al. 
Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases
Cancer Res.
2009
, vol. 
69
 (pg. 
8009
-
8016
)
288
Shaik-Dasthagirisaheb
Y. B.
Varvara
G.
Murmura
G.
Saggini
A.
Potalivo
G.
Caraffa
A.
Antinolfi
P.
Tete
S.
Tripodi
D.
Conti
F.
, et al. 
Vascular endothelial growth factor (VEGF), mast cells and inflammation
Int. J. Immunopathol. Pharmacol.
2013
, vol. 
26
 (pg. 
327
-
335
)
289
Ahluwalia
A.
Jones
M. K.
Szabo
S.
Tarnawski
A. S.
Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism
Biochem. Biophys. Res. Commun.
2013
, vol. 
437
 (pg. 
515
-
520
)
290
Saif
M. W.
Is there a benefit from addiction to anti-VEGF therapy in patients with colorectal cancer?
Anticancer Res.
2013
, vol. 
33
 (pg. 
2377
-
2380
)
291
Pirker
R.
EGFR-directed monoclonal antibodies in non-small cell lung cancer
Target. Oncol.
2013
, vol. 
8
 (pg. 
47
-
53
)
292
Berardi
R.
Santoni
M.
Morgese
F.
Ballatore
Z.
Savini
A.
Onofri
A.
Mazzanti
P.
Pistelli
M.
Pierantoni
C.
De Lisa
M.
, et al. 
Novel small molecule EGFR inhibitors as candidate drugs in non-small cell lung cancer
Onco. Targets Ther.
2013
, vol. 
6
 (pg. 
563
-
576
)